Creating a hybrid cloud analytics solution integrating on-premises databases with AWS Redshift using AWS Data Migration Service
PythonBased on your request, it seems like we will need several steps to accomplish this task as it involves a few different AWS services.
Here is the high-level overview:
-
Create an Amazon Redshift Cluster (using
pulumi_aws.redshift.Cluster
). Your analytics workloads will run in this Redshift database. -
Create an AWS DMS (Data Migration Service) instance (using
pulumi_aws.dms.ReplicationInstance
). -
Create a DMS endpoint for both your on-premises database and the Redshift database (using
pulumi_aws.dms.Endpoint
). -
Create a DMS replication task (using
pulumi_aws.dms.ReplicationTask
), that will defines the migration type and replication rules (replication job or chore).
Now let's put that into a Pulumi program.
The following is a rough skeleton for the Python Pulumi program. Please note that this is a high-level example and not a fully-working program. You need to provide appropriate configurations options replacing the TODOs.
import pulumi from pulumi_aws import redshift, dms # Create a Redshift cluster redshift_cluster = redshift.Cluster("redshiftCluster", cluster_identifier="redshift-cluster-1", database_name="mydb", master_username="todo_replace_with_username", master_password="todo_replace_with_password", node_type="dc2.large", cluster_type="single-node") # Create DMS replication instance dms_replication_instance = dms.ReplicationInstance("dmsReplicationInstance", replication_instance_id="test-dms-replication-instance-id", replication_instance_class="dms.r4.large") # Create DMS source (on-premise database) endpoint dms_source_endpoint = dms.Endpoint("dmsSourceEndpoint", endpoint_id="test-dms-source-endpoint", endpoint_type="source", # TODO - you'll need to configure the correct engine_name # and the connection info such as server_name, username, password, etc. engine_name="postgres", server_name="todo_replace_with_on_premise_db_host", username="todo_replace_with_on_premise_db_username", password="todo_replace_with_on_premise_db_password", database_name="todo_replace_with_on_premise_db_name") # Create DMS target (Redshift) endpoint dms_target_endpoint = dms.Endpoint("dmsTargetEndpoint", endpoint_id="test-dms-target-endpoint", endpoint_type="target", # TODO - you'll need to configure the correct engine_name # and the connection info such as server_name, username, password, etc. engine_name="redshift", server_name=redshift_cluster.endpoint, username="todo_replace_with_redshift_username", password="todo_replace_with_redshift_password", database_name="mydb") # Create DMS migration task dms_replication_task = dms.ReplicationTask("dmsReplicationTask", migration_type="full-load-and-cdc", table_mappings="todo-replace-with-table-mapping", replication_task_id="test-dms-replication-task-id", source_endpoint_arn=dms_source_endpoint.arn, target_endpoint_arn=dms_target_endpoint.arn, replication_instance_arn=dms_replication_instance.arn) # Export the Redshift endpoint pulumi.export('redshiftEndpoint', redshift_cluster.endpoint)
The
table_mappings
attribute should follow AWS DMS's JSON format for table mappings (selecting schemas, tables, and columns, and specifying how to load and replicate data). You can find more information in the AWS DMS documentation.For more detailed information about each resource, please visit their corresponding links:
pulumi_aws.redshift.Cluster
pulumi_aws.dms.ReplicationInstance
pulumi_aws.dms.Endpoint
pulumi_aws.dms.ReplicationTask
Please replace all placeholders (such as
todo_replace_with_...
) with appropriate values as per your environment.-