1. Deploy the mlflow-server helm chart on Azure Kubernetes Service (AKS)

    TypeScript

    To deploy the mlflow-server Helm chart on Azure Kubernetes Service (AKS), you will first need to set up an AKS cluster using Pulumi, and then deploy the chart to this cluster. The Pulumi program below will guide you through these steps. We use the @pulumi/azure-native package to create the AKS cluster and @pulumi/kubernetes to manage Kubernetes resources like the Helm chart.

    Here's how the process will unfold:

    1. Setting up an AKS Cluster: We set up a new AKS cluster with a specified node count, VM size, and Kubernetes version. We include an SSH key for accessing nodes.
    2. Deploying the mlflow-server Helm Chart: Once the AKS cluster is available, we configure Kubernetes provider to deploy Helm charts to that cluster. Then we deploy mlflow-server using the Helm chart available in a public repository.

    Below is the program in TypeScript. I've provided comments throughout the code to explain each step.

    import * as pulumi from '@pulumi/pulumi'; import * as azureNative from '@pulumi/azure-native'; import * as k8s from '@pulumi/kubernetes'; // Step 1: Create a new AKS cluster const resourceGroup = new azureNative.resources.ResourceGroup('myResourceGroup'); const aksCluster = new azureNative.containerservice.ManagedCluster('myAksCluster', { resourceGroupName: resourceGroup.name, agentPoolProfiles: [{ count: 2, // Number of nodes in the Node Pool vmSize: 'Standard_DS2_v2', // VM size for the nodes mode: 'System', // Mode for the agent pool name: 'agentpool', // Name of the agent pool }], dnsPrefix: 'myakscluster', // DNS prefix for AKS enableRBAC: true, // Enable RBAC for the cluster kubernetesVersion: '1.19.11', // Specify the version of Kubernetes linuxProfile: { adminUsername: 'adminuser', // Admin username for the nodes ssh: { publicKeys: [{ keyData: 'ssh-rsa ...' }], // SSH public key to access the nodes }, }, // ... other necessary configurations for the cluster }); // Export the cluster's kubeconfig export const kubeconfig = aksCluster.kubeConfig; // Step 2: Deploy the mlflow-server Helm chart const myK8sProvider = new k8s.Provider('myK8sProvider', { kubeconfig: kubeconfig, }); const mlflowServerChart = new k8s.helm.v3.Chart('mlflowServer', { chart: 'mlflow', version: '1.0.0', // Specify the version of the Helm chart fetchOpts: { repo: 'http://your-helm-chart-repository/', // Replace with Helm chart repository containing mlflow }, }, { provider: myK8sProvider }); // Export the endpoint of the mlflow server export const mlflowServerEndpoint = mlflowServerChart.getResourceProperty('v1/Service', 'mlflow-server', 'status').apply(status => status.loadBalancer?.ingress[0]?.ip);

    Ensure you have the correct SSH public key and the Helm chart repository URL before trying to run this Pulumi program. If you don't have a specific version for the mlflow-server Helm chart, you might need to check the chart repository for the available versions or omit the version property to use the latest one.

    To apply this Pulumi program:

    1. Save the code to a file with a .ts extension, for example deployMlflowServer.ts.
    2. Run pulumi up from the command line in the same directory as your code, making sure you've selected the correct subscription and authenticated with Azure.

    After running the program, Pulumi will provide you with the endpoint for the deployed MLflow server, which you can use to interact with your MLflow instance.