1. Answers
  2. Kubernetes Cluster For Distributed Training Of Models

Kubernetes Cluster for Distributed Training of Models

Introduction

In this guide, we will create a Kubernetes cluster on AWS using Pulumi. This cluster will be used for distributed training of machine learning models. We will leverage Amazon EKS (Elastic Kubernetes Service) to manage our Kubernetes control plane, and we will use EC2 instances as worker nodes.

Step-by-Step Explanation

Step 1: Set up the Pulumi project

  1. Initialize a new Pulumi project.
  2. Install the necessary Pulumi packages for AWS and Kubernetes.

Step 2: Create the EKS Cluster

  1. Define the VPC and subnets for the EKS cluster.
  2. Create the EKS cluster.
  3. Configure the worker nodes.

Step 3: Deploy the Kubernetes resources

  1. Configure kubectl to use the new EKS cluster.
  2. Deploy any necessary Kubernetes resources for distributed training.

Step 4: Verify the setup

  1. Ensure the EKS cluster is up and running.
  2. Verify that the worker nodes are correctly configured.
  3. Deploy a sample workload to test the cluster.

Conclusion

By following these steps, you will have a fully functional Kubernetes cluster on AWS that is ready for distributed training of machine learning models. This setup leverages the scalability and flexibility of Kubernetes, along with the managed services provided by AWS, to create a robust environment for your machine learning workloads.

Full Code Example

import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
import * as eks from "@pulumi/eks";
import * as k8s from "@pulumi/kubernetes";

// Create a VPC for the EKS cluster
const vpc = new aws.ec2.Vpc("eks-vpc", {
    cidrBlock: "10.0.0.0/16",
    enableDnsHostnames: true,
    enableDnsSupport: true,
    tags: { Name: "eks-vpc" },
});

// Create subnets for the VPC
const subnet1 = new aws.ec2.Subnet("eks-subnet-1", {
    vpcId: vpc.id,
    cidrBlock: "10.0.1.0/24",
    availabilityZone: "us-west-2a",
    tags: { Name: "eks-subnet-1" },
});

const subnet2 = new aws.ec2.Subnet("eks-subnet-2", {
    vpcId: vpc.id,
    cidrBlock: "10.0.2.0/24",
    availabilityZone: "us-west-2b",
    tags: { Name: "eks-subnet-2" },
});

// Create the EKS cluster
const cluster = new eks.Cluster("eks-cluster", {
    vpcId: vpc.id,
    subnetIds: [subnet1.id, subnet2.id],
    instanceType: "t3.medium",
    desiredCapacity: 2,
    minSize: 1,
    maxSize: 3,
    enabledClusterLogTypes: ["api", "audit", "authenticator"],
    tags: { Name: "eks-cluster" },
});

// Export the cluster name and kubeconfig
export const clusterName = cluster.eksCluster.name;
export const kubeconfig = cluster.kubeconfig;

// Deploy a sample Kubernetes workload
const appLabels = { app: "nginx" };
const deployment = new k8s.apps.v1.Deployment("nginx-deployment", {
    metadata: { namespace: "default" },
    spec: {
        selector: { matchLabels: appLabels },
        replicas: 2,
        template: {
            metadata: { labels: appLabels },
            spec: {
                containers: [{
                    name: "nginx",
                    image: "nginx",
                    ports: [{ containerPort: 80 }],
                }],
            },
        },
    },
}, { provider: cluster.provider });

const service = new k8s.core.v1.Service("nginx-service", {
    metadata: { namespace: "default" },
    spec: {
        selector: appLabels,
        ports: [{ port: 80, targetPort: 80 }],
        type: "LoadBalancer",
    },
}, { provider: cluster.provider });

Deploy this code

Want to deploy this code? Sign up for a free Pulumi account to deploy in a few clicks.

Sign up

New to Pulumi?

Want to deploy this code? Sign up with Pulumi to deploy in a few clicks.

Sign up