
Delivering Cloud Native
Infrastructure as Code

Enabling the future of cloud engineering with Pulumi

Delivering Cloud Native Infrastructure as Code pg. 2

Executive Summary
To a first approximation, all developers are cloud developers, all applications are cloud native,
and all operations are cloud-first. Yet, there is a lack of a consistent approach to delivering cloud
native applications and infrastructure. The tools and processes differ by technology generation, and
even by cloud vendor, and so deny the full potential of cloud native application delivery.

In this paper, we make the case for a consistent programming model for the cloud and examine:

• How the cloud has already evolved three times as it increasingly moves toward stateless
compute to deliver on the opportunities afforded by unprecedented economies of scope and
scale.

• How stateless compute has shifted infrastructure management concerns from ‘at rest’ to ‘in
motion’, and increasingly moved these concerns up the stack to development.

• How the growth of DSL-based tools has lead to complexity for DevOps teams, failed to deliver
on the promised collaboration between development and operations functions, and does not
satisfy the need for increasing delivery speed in the cloud.

We explore how Pulumi is designed to deliver on cloud native infrastructure as code requirements
with a consistent programming model, providing a development platform and control plane to meet
the demands of high-velocity application development in the cloud.

To a first approximation, all developers are cloud
developers, all applications are cloud native, and
all operations are cloud-first.

https://www.pulumi.com

Delivering Cloud Native Infrastructure as Code pg. 3

The Challenges of Cloud Development and
DevOps
The cloud is no longer new, and most IT teams — from development to operations — will have cloud
as some portion of their portfolio, and likely a long-term strategy or posture on cloud migration. But
precisely how has the cloud changed the tools, and concerns for software delivery?

The 3 Evolutions of Cloud

Enterprise software has undergone a slow shift from containerless servers to serverless
containers. In its relatively short lifespan, the cloud has already undergone — or is undergoing —
three distinct evolutions. Each of these evolutions unlocked further economies of scope and scale.

• Virtual Machines. The initial wave of cloud computing offered ‘lift and shift’ migration
strategies and flipped infrastructure planning from a capex to opex activity.

• Containers (and Kubernetes). The current wave of cloud computing offered improvements
over VMs well-suited to cloud native approaches: infrastructure abstraction, OS isolation, and
a model for highly distributed applications.

• Serverless. The incoming wave of cloud computing offers the current ultimate role for the
cloud: a stateless mesh of on-demand, infinitely scalable services, with options for arbitrary
code execution.

In doing so, cloud computing has been continuously driving towards event-driven stateless
computing. The current state-of-the-art ‘serverless’ computing can be said to be entirely stateless,
with the consumer of those services paying for state when required, in other words, when the
functions are executed.

Enterprise software has undergone a slow shift
from containerless servers to serverless containers.

Delivering Cloud Native Infrastructure as Code pg. 4

As usual, the future is unevenly distributed. A quick look at Google Trends over five years provides a
reasonably clear picture of how embedded these evolutions are in the market at large. In this view,
we use the presumed category incumbents to represent the market.

We can redraw this picture as an adoption curve across these evolutions approximately as follows:

Each of these evolutions has opportunity, but also embedded cost: cost to switch, cost of skills, and
cost of workflows and tools. Each also carries risk through isolated stovepipes: limited numbers of
experts to attend to a given paradigm.

To remediate these costs and risks, enterprises need tools that can work across these
paradigms in a consistent way, and also remain consistent as the next inevitable evolution
occurs.

INTEREST OVER TIME, 5 Years to Current Date

Delivering Cloud Native Infrastructure as Code pg. 5

The Shift from Infrastructure at Rest, to Infrastructure in Motion

If infrastructure isn’t precisely immutable, it’s certainly increasingly ephemeral. Docker, and
container technology generally, champions immutable infrastructure, but as already described,
not everything cloud native is immutable, nor is it desired to be immutable. However, the nature
of the available endpoints in the form of managed services, or code execution environments such
as serverless environments, or Kubernetes clusters, means that developers are ‘choosing the
infrastructure’ for their apps by design.

Making infrastructure choices inside application development increases the ephemerality of the
infrastructure: application code refactoring may result in significant changes to the infrastructure (or
more specifically, the cloud resources necessary for execution of the code). Additionally, the use of
managed services typically means a constrained and/or well-known set of configurations to apply, vs
an arbitrary custom deployment.

This is a huge shift from ‘infrastructure at rest’ where configuration management, and convergence-
based IaC tools were the preferred way of managing a typical lifecycle of provisioning, through long-
lasting configuration tasks such as patch management, compliance, and drift correction. Instead,
cloud native development practices mean ‘infrastructure in motion’, where provisioning could
be tied to individual commits of application code, and the lifespan of the infrastructure (whether
immutable or mutable) does not warrant continued configuration management.

This ephemerality is often characterized as ‘developers moving down the stack’ (becoming
responsible for infrastructure) and ‘operations moving up the stack’ (becoming responsible for
code), but the reality is the overall shift is towards increasingly codified provisioning of short-lived
infrastructure.

To support this shift, enterprises need tools that can connect application code and
infrastructure code in way that is logical, expressive, and familiar to development and
operations teams where application code increasingly defines the infrastructure resource
requirements for a cloud application.

If infrastructure isn’t precisely immutable,
it’s certainly increasingly ephemeral.

Delivering Cloud Native Infrastructure as Code pg. 6

The Trouble with DSLs

YAML Ain’t A Programming Language Either. The reality is that DSLs certainly become
overstretched, and overused by practitioners for a number of reasons: 1) the initial success of a ‘DSL’
means it naturally gets used outside of intended domain, 2) the domain itself extends beyond its
initial boundaries and 3) it’s often easy to build an initial solution in DSL which can become ossified.
Inevitably then, DSLs are typically neither domain-specific, nor languages.

In the case of IaC, one of the most prevalent DSLs is YAML. YAML was not intended as a
programming language and lacks the features and tooling necessary to make it productive. Worse, it
encourages poor programming practice: for instance, repetition of huge chunks of code owing the
lack of subroutine support, or abstraction mechanics.

YAML, for instance, should be considered as bytecode: intended to be an output format of some
other program. Instead, development and devops teams wrestle with ever growing, and increasingly
fragile, lines of YAML code, without the support of sophisticated IDEs and similar tooling support to
make them productive.

DevOps teams have taken it upon themselves to become those DSL experts, but are increasingly
overwhelmed by the number of DSLs needed for cloud-based DevOps. Development teams on the
other hand, simply reject non-code-based DSLs and spend their time working on the things that
matter to them: the app. Those teams that embraced DevOps as means of improving software
delivery speed and quality through collaboration and shared practices find themselves once again
isolated.

To remediate the strain of DSLs on development and devops teams, enterprises need tools
that provide consistent, consolidated experiences, and provide the mature tooling that
development teams expect in other aspects of their work.

YAML Ain’t A Programming Language Either.

Delivering Cloud Native Infrastructure as Code pg. 7

Pulumi Provides a Cloud Native Programming
Model
Using real languages changes everything. The Pulumi Cloud Development Platform is a
combination of tools, libraries, runtime, and service that delivers a consistent development and
operational control plane for cloud native infrastructure.

At the center of Pulumi is an open source cloud object model, coupled with an evaluation runtime
that understands how to take programs written in any language, understand the cloud resources
necessary to execute them, and then plan and manage those resources in a robust way. This cloud
runtime and object model is inherently language- and cloud-neutral, enabling Pulumi to support
many languages and clouds rapidly.

Pulumi aims to provide a solution to the challenges of cloud application development and delivery
by providing a consistent programming model for cloud native development:

• Consistent across cloud technology paradigms. Providing a single toolset for infrastructure,
managed services, containers, and serverless environments on any cloud infrastructure.

• Productive, expressive use of real languages. Providing a common runtime that can
be bound to existing languages, taking advantage of the idioms of that language: from
abstraction, through to packaging.

• Continuous delivery for cloud native infrastructure. Providing a common structure to
connect application code and infrastructure code to ensure a rapid inner development loop,
and a well-managed outer operational loop.

https://www.pulumi.com/product

Delivering Cloud Native Infrastructure as Code pg. 8

Consistency and power across cloud technology paradigms.

The fragmentation of existing tools and DSLs is consolidated within the Pulumi framework which
offers:

Multi-Language Runtime. The Pulumi runtime was architected to support many languages, and to
do so in an idiomatic way for all aspects of a target language: style, syntax, packages, etc. It currently
supports JavaScript, TypeScript, Python, and Go and is fully open source to accept contributions for
alternative languages.

Cloud Object Model. Pulumi’s underlying cloud object model offers a rich view into how cloud
programs are constructed. The resulting objects form a Directed Acyclic Graph (DAG) using
dependencies from program that the system can analyze and understand to deliver insights for
sophisticated static analysis and visualizations.

Multi-Technology Scope. Pulumi’s programming model extends across infrastructure, managed
services, containers, container management, and serverless technology areas. The full APIs of those
servers are exposed and can be targeted by a chosen language. Targeted technologies may be
combined to unlock the scenarios that enterprises need: e.g. connecting data services to Kubernetes
clusters, or combining serverless functions with container tasks.

Multi-Cloud Scope. The Pulumi cloud object model is a powerful foundation that can support any
cloud provider. This delivers a unified programming model, tools, and control plane for managing
cloud software anywhere. There’s no need to learn a variety of DSLs and tools just to get a cloud
native application into production. Pulumi supports the major cloud vendors (Amazon Web Services,
Microsoft Azure, Google Cloud Platform), Kubernetes (in any environment), along with OpenStack
and VMWare vSphere.

Pulumi makes multi-cloud, multi-technology targeting a reality with a consistent
programming model in real languages.

Using real languages changes everything.

Delivering Cloud Native Infrastructure as Code pg. 9

Productive, expressive use of real languages.

As the Pulumi runtime can support many languages, development and devops teams gain the
natural productivity benefits of those languages which are often missing from DSLs and associated
tooling. Advantages include:

Familiarity and expressiveness. Using already understood languages has clear productivity,
communication and collaboration benefits and negates the need to learn new bespoke DSLs or
YAML-based templating languages. Developers and DevOps teams can work using a common
language and code base rather than attempting a hand-off through a DSL-enforced separation of
concerns, which improves collaboration, and reduces the fragility and risk in a system.

Real languages also means gaining access to powerful - but obvious - benefits: capture references to
variables such as constants, configuration settings or encrypted secrets, or even references to other
resources so that all resources can be connected in an expressive and logical manner to achieve the
desired output.

import * as aws from “@pulumi/aws”;

import * as serverless from “@pulumi/aws-serverless”;

let topic = new aws.sns.Topic(“topic”);

serverless.cloudwatch.onEvent(“hourly”, “rate(60 minutes)”, event => {

 const sns = new (await import “aws-sdk”).SNS();

 return sns.publish({

 Message: JSON.stringify({ event: event }),

 TopicArn: topic.id.get(),

 }).promise();

});

Abstraction and reuse. Real development languages offer abstraction, and as a result, reuse of
code. Pulumi supports the appropriate package managers for the chosen development language
(e.g. NPM for JS/TS, PyPi for Python). This allows the elimination of significant LoC from a typical DSL-
based configuration, and removes the practice of copy-and-paste development with its inherent drift
and error replication risks.

This example code shows the refactoring of a typical AWS Best Practice for setting up a VPC, and
how it can be reused and instantiated as needed in new Pulumi programs.

import * as awsinfra from “@pulumi/aws-infra”;

let network = new awsinfra.Network(`${prefix}-net`, {

 numberOfAvailabilityZones: 3, // Create subnets in many AZs
 usePrivateSubnets: true, // Run inside private per-AZ subnets
});

Delivering Cloud Native Infrastructure as Code pg. 10

Tooling and workflows. By using real languages, development and devops teams instantly gain
access to IDEs, refactoring, testing, static analysis and linters, and so much more. This both improves
the productivity and quality of team efforts, and throws into harsh relief the lack of tooling for DSL-
based approaches, which is often hard to debug and remediate.

Pulumi brings the existing power of real programming languages to cloud native
infrastructure and application delivery for huge productivity and collaboration gains.

Pulumi brings the existing power of real
programming languages to cloud native
infrastructure and application delivery for
huge productivity and collaboration gains.

Delivering Cloud Native Infrastructure as Code pg. 11

Continuous delivery for cloud native infrastructure.

Because infrastructure is now linked to application code, and because of the ephemeral nature of
the infrastructure, the ‘integration’ aspect of CI/CD becomes less interesting. What matters more is
the ‘delivery’ aspect: improving both ‘inner loop’ development and ‘outer loop’ operations.

Previously there was very limited tooling at the very point of collaboration needed by development
and devops teams. Pulumi connects those teams and improves the required workflows.

Delivering Cloud ‘Stacks’. A core concept in Pulumi is the idea of a “stack.” A stack is an isolated
instance of a cloud program whose resources and configuration are distinct from all other stacks.
A team might have a stack each for production, staging, and testing, or perhaps for each single-
tenanted environment. Pulumi’s CLI makes it trivial to spin up and tear down lots of stacks. This
opens up workflows that might not have previously even attempted, such as each developer having
her own stack, spinning up (and tearing down) a fresh stack to test out each Pull Request, or even
splitting tiers of your service into many stacks that are linked together - all of which is applicable and
useful in cloud application deliver scenarios.

Enabling a unified Cloud Native Infrastructure CD Pipeline. As a Pulumi stack can contain
references to any aspect of a cloud environment then it provides a unified pipeline for continuous
delivery. For instance, Pulumi can setup and configure managed infrastructure, build and publish
containers into orchestration systems, and connect serverless functions all in the same code and stack.
The Pulumi runtime can then be invoked to build, update, and teardown this infrastructure at will.

Pulumi rewrites the rulebook on CI/CD by connecting application code and infrastructure code
at the code base, unlocking new workflows to deliver cloud native infrastructure as code.

Delivering Cloud Native Infrastructure as Code pg. 12

Use Cases
Pulumi provides a consistent programming model across the cloud, from VMs through containers
and Kubernetes, to serverless and managed services.

Infrastructure. Managed cloud services and
infrastructure, continuously deployed and
configured in a robust and compliant manner.

// Create a simple web server
const aws = require(“@pulumi/aws”);
let size = ”t2.micro”;
let ami = ”ami-7172b611”

let server = new aws.ec2.Instance(“web-
server-www”, {
 tags: { “Name”:”web-server-www” },
 instanceType: size,
 securityGroups: [group.name],
 ami: ami,
 userData: userData
});

exports.publicIp = server.publicIp;
exports.publicHostName = server.publicDns;

// Deploy 3 replicas of an nginx pod
import * as k8s from “@pulumi/kubernetes”;
function deploy(name, replicas, pod) {
 return new k8s.apps.v1beta1.Deployment(name, {
 spec: {
 selector: { matchLabels: pod.metadata
labels },
 replicas: replicas,
 template: pod
 }
 });
}
const nginxServer = deploy(“nginx”, 3, {
 metadata: { labels: { app: “nginx” } },
 spec: {
 containers: [{ name: “nginx”,
 image: “nginx:1.15-alpine” }]
 }
});

// Deploy a customer nginx container
import * as cloud from “@pulumi/cloud”;
let nginx = new cloud.Service(“nginx”, {
 build: “.”,
 ports: [{ port: 80 }],
 replicas: 2,
});

export let url = nginx.defaultEndpoint;

// Create a serverless REST API
import * as cloud from “@pulumi/cloud”;
let app = new cloud.API(“my-app”);
app.static(“/”, “www”);

app.get(“/hello”, (req, res) =>
 res.json({ hello: “World!” }));

export let url = app.publish().url;

Kubernetes. Target on-premises or cloud-based
Kubernetes services to provision clusters, and
create, deploy, and manage apps.

Containers. Deploy container-based apps
into any cloud native infrastructure, from VMs
to Kubernetes, to custom orchestrators.

Serverless. Deploy and scale websites easily,
handle event-streaming, and processing with
multi-cloud microservices.

Delivering Cloud Native Infrastructure as Code pg. 13

Case Study:

Learning Machine migrates from
CloudFormation to Pulumi

Learning Machine, a successful blockchain-based SaaS company, faced two challenges with their
cloud native infrastructure:

1. Increasing skills gaps between development and devops teams began to create silos, and risk
to their code base.

2. Increasing need to more rapidly provision their service owing to their expanding roster of
new customers.

Learning Machine suffered from a loss of productivity and an inability to meet business demands, as
the development team did not understand the systems, tools, or architecture for service provisioning.

By using Pulumi, Learning Machine were able to reduce 25,000 LoC of ad-hoc scripts to 500 LoC
of JavaScript that could be understood across all teams, enabling the development team to take
accountability for service delivery to meet business needs. Additionally, moving to Pulumi removes
lock-in to a specific cloud, and has enabled Learning Machine to begin work on their on-premises
private cloud service.

“Pulumi has given our team the tools and framework to achieve a unified
development and DevOps model, boosting productivity and taking our business
to any cloud environment that our customers need. We retired 25,000 lines of
complex code that few team members understood and replaced it with 100s of
lines in a real programming language.”
Kim Hamilton, CTO, Learning Machine

https://www.learningmachine.com/

Delivering Cloud Native Infrastructure as Code pg. 14

Conclusion
The rapid pace of evolution of the cloud, combined with the shift to ephemeral infrastructure,
and the connection of application code and infrastructure code, demands a different view of
cloud development and devops.

Pulumi provides a platform to deliver cloud native infrastructure as code for any technology, any
cloud, and any language:

• Making multi-cloud, multi-technology targeting a reality with a consistent programming
model in real languages.

• Using the existing power of real programming languages to cloud native infrastructure and
application delivery for huge productivity and collaboration gains.

• Rewriting the rulebook on CI/CD by connecting application code and infrastructure code at
the code base, unlocking new workflows to deliver cloud native infrastructure as code.

Cloud Native development represents a step change in opportunity, and capabilities, for
development and devops teams. Pulumi brings together those teams to ensure their success
through huge productivity and quality gains with a Cloud Native Development Platform designed for
every cloud evolution.

About Pulumi
Pulumi provides a Cloud Native Development Platform that enables teams to get their serverless,
containers, infrastructure and Kubernetes code to the cloud quickly and simply. Pulumi provides an
SDK to define, deploy and manage cloud services using familiar languages (JavaScript, TypeScript,
Python, Go), with clear collaboration for teams and enterprises to deliver cloud native, multi-cloud
capable, applications and solutions. For more, visit http://pulumi.com

The rapid pace of evolution of the cloud, combined with
the shift to ephemeral infrastructure, and the connection
of application code and infrastructure code, demands a
different view of cloud development and devops.

http://pulumi.com

