1. Packages
  2. Databricks Provider
  3. API Docs
  4. getDataQualityMonitors
Databricks v1.78.0 published on Friday, Nov 7, 2025 by Pulumi

databricks.getDataQualityMonitors

Get Started
databricks logo
Databricks v1.78.0 published on Friday, Nov 7, 2025 by Pulumi

    Public Beta

    This data source can be used to fetch the list of data quality monitors.

    For the table object_type, the caller must either:

    1. be an owner of the table’s parent catalog
    2. have USE_CATALOG on the table’s parent catalog and be an owner of the table’s parent schema.
    3. have the following permissions:
      • USE_CATALOG on the table’s parent catalog
      • USE_SCHEMA on the table’s parent schema
      • SELECT privilege on the table.

    Note This data source can only be used with a workspace-level provider!

    Example Usage

    Getting a list of all data quality monitors:

    import * as pulumi from "@pulumi/pulumi";
    import * as databricks from "@pulumi/databricks";
    
    const all = databricks.getDataQualityMonitors({});
    
    import pulumi
    import pulumi_databricks as databricks
    
    all = databricks.get_data_quality_monitors()
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := databricks.GetDataQualityMonitors(ctx, &databricks.GetDataQualityMonitorsArgs{}, nil)
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Databricks = Pulumi.Databricks;
    
    return await Deployment.RunAsync(() => 
    {
        var all = Databricks.GetDataQualityMonitors.Invoke();
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.databricks.DatabricksFunctions;
    import com.pulumi.databricks.inputs.GetDataQualityMonitorsArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var all = DatabricksFunctions.getDataQualityMonitors(GetDataQualityMonitorsArgs.builder()
                .build());
    
        }
    }
    
    variables:
      all:
        fn::invoke:
          function: databricks:getDataQualityMonitors
          arguments: {}
    

    Using getDataQualityMonitors

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getDataQualityMonitors(args: GetDataQualityMonitorsArgs, opts?: InvokeOptions): Promise<GetDataQualityMonitorsResult>
    function getDataQualityMonitorsOutput(args: GetDataQualityMonitorsOutputArgs, opts?: InvokeOptions): Output<GetDataQualityMonitorsResult>
    def get_data_quality_monitors(page_size: Optional[int] = None,
                                  opts: Optional[InvokeOptions] = None) -> GetDataQualityMonitorsResult
    def get_data_quality_monitors_output(page_size: Optional[pulumi.Input[int]] = None,
                                  opts: Optional[InvokeOptions] = None) -> Output[GetDataQualityMonitorsResult]
    func GetDataQualityMonitors(ctx *Context, args *GetDataQualityMonitorsArgs, opts ...InvokeOption) (*GetDataQualityMonitorsResult, error)
    func GetDataQualityMonitorsOutput(ctx *Context, args *GetDataQualityMonitorsOutputArgs, opts ...InvokeOption) GetDataQualityMonitorsResultOutput

    > Note: This function is named GetDataQualityMonitors in the Go SDK.

    public static class GetDataQualityMonitors 
    {
        public static Task<GetDataQualityMonitorsResult> InvokeAsync(GetDataQualityMonitorsArgs args, InvokeOptions? opts = null)
        public static Output<GetDataQualityMonitorsResult> Invoke(GetDataQualityMonitorsInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetDataQualityMonitorsResult> getDataQualityMonitors(GetDataQualityMonitorsArgs args, InvokeOptions options)
    public static Output<GetDataQualityMonitorsResult> getDataQualityMonitors(GetDataQualityMonitorsArgs args, InvokeOptions options)
    
    fn::invoke:
      function: databricks:index/getDataQualityMonitors:getDataQualityMonitors
      arguments:
        # arguments dictionary

    The following arguments are supported:

    pageSize Integer
    pageSize number
    pageSize Number

    getDataQualityMonitors Result

    The following output properties are available:

    Id string
    The provider-assigned unique ID for this managed resource.
    Monitors List<GetDataQualityMonitorsMonitor>
    PageSize int
    Id string
    The provider-assigned unique ID for this managed resource.
    Monitors []GetDataQualityMonitorsMonitor
    PageSize int
    id String
    The provider-assigned unique ID for this managed resource.
    monitors List<GetDataQualityMonitorsMonitor>
    pageSize Integer
    id string
    The provider-assigned unique ID for this managed resource.
    monitors GetDataQualityMonitorsMonitor[]
    pageSize number
    id str
    The provider-assigned unique ID for this managed resource.
    monitors Sequence[GetDataQualityMonitorsMonitor]
    page_size int
    id String
    The provider-assigned unique ID for this managed resource.
    monitors List<Property Map>
    pageSize Number

    Supporting Types

    GetDataQualityMonitorsMonitor

    AnomalyDetectionConfig GetDataQualityMonitorsMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    DataProfilingConfig GetDataQualityMonitorsMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    ObjectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    ObjectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    AnomalyDetectionConfig GetDataQualityMonitorsMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    DataProfilingConfig GetDataQualityMonitorsMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    ObjectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    ObjectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig GetDataQualityMonitorsMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig GetDataQualityMonitorsMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    objectId String
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType String
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig GetDataQualityMonitorsMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig GetDataQualityMonitorsMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    objectId string
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType string
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomaly_detection_config GetDataQualityMonitorsMonitorAnomalyDetectionConfig
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    data_profiling_config GetDataQualityMonitorsMonitorDataProfilingConfig
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    object_id str
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    object_type str
    (string) - The type of the monitored object. Can be one of the following: schema or table
    anomalyDetectionConfig Property Map
    (AnomalyDetectionConfig) - Anomaly Detection Configuration, applicable to schema object types
    dataProfilingConfig Property Map
    (DataProfilingConfig) - Data Profiling Configuration, applicable to table object types. Exactly one Analysis Configuration must be present
    objectId String
    (string) - The UUID of the request object. It is schema_id for schema, and table_id for table.
    objectType String
    (string) - The type of the monitored object. Can be one of the following: schema or table

    GetDataQualityMonitorsMonitorDataProfilingConfig

    DashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    DriftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    EffectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    LatestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    MonitorVersion int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    MonitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    OutputSchemaId string
    (string) - ID of the schema where output tables are created
    ProfileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    Status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    AssetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    BaselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    CustomMetrics List<GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric>
    (list of DataProfilingCustomMetric) - Custom metrics
    InferenceLog GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    NotificationSettings GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    Schedule GetDataQualityMonitorsMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    SkipBuiltinDashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    SlicingExprs List<string>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    Snapshot GetDataQualityMonitorsMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    TimeSeries GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    WarehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    DashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    DriftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    EffectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    LatestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    MonitorVersion int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    MonitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    OutputSchemaId string
    (string) - ID of the schema where output tables are created
    ProfileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    Status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    AssetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    BaselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    CustomMetrics []GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric
    (list of DataProfilingCustomMetric) - Custom metrics
    InferenceLog GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    NotificationSettings GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    Schedule GetDataQualityMonitorsMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    SkipBuiltinDashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    SlicingExprs []string
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    Snapshot GetDataQualityMonitorsMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    TimeSeries GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    WarehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId String
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName String
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId String
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage String
    (string) - The latest error message for a monitor failure
    monitorVersion Integer
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName String
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId String
    (string) - ID of the schema where output tables are created
    profileMetricsTableName String
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status String
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir String
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName String
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics List<GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric>
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorsMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard Boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs List<String>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorsMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId String
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId string
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName string
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId string
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage string
    (string) - The latest error message for a monitor failure
    monitorVersion number
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName string
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId string
    (string) - ID of the schema where output tables are created
    profileMetricsTableName string
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status string
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir string
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName string
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric[]
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorsMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs string[]
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorsMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId string
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboard_id str
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    drift_metrics_table_name str
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effective_warehouse_id str
    (string) - The warehouse for dashboard creation
    latest_monitor_failure_message str
    (string) - The latest error message for a monitor failure
    monitor_version int
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitored_table_name str
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    output_schema_id str
    (string) - ID of the schema where output tables are created
    profile_metrics_table_name str
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status str
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assets_dir str
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baseline_table_name str
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    custom_metrics Sequence[GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric]
    (list of DataProfilingCustomMetric) - Custom metrics
    inference_log GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notification_settings GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings
    (NotificationSettings) - Field for specifying notification settings
    schedule GetDataQualityMonitorsMonitorDataProfilingConfigSchedule
    (CronSchedule) - The cron schedule
    skip_builtin_dashboard bool
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicing_exprs Sequence[str]
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot GetDataQualityMonitorsMonitorDataProfilingConfigSnapshot
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    time_series GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouse_id str
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used
    dashboardId String
    (string) - Id of dashboard that visualizes the computed metrics. This can be empty if the monitor is in PENDING state
    driftMetricsTableName String
    (string) - Table that stores drift metrics data. Format: catalog.schema.table_name
    effectiveWarehouseId String
    (string) - The warehouse for dashboard creation
    latestMonitorFailureMessage String
    (string) - The latest error message for a monitor failure
    monitorVersion Number
    (integer) - Represents the current monitor configuration version in use. The version will be represented in a numeric fashion (1,2,3...). The field has flexibility to take on negative values, which can indicate corrupted monitor_version numbers
    monitoredTableName String
    (string) - Unity Catalog table to monitor. Format: catalog.schema.table_name
    outputSchemaId String
    (string) - ID of the schema where output tables are created
    profileMetricsTableName String
    (string) - Table that stores profile metrics data. Format: catalog.schema.table_name
    status String
    (string) - The data profiling monitor status. Possible values are: DATA_PROFILING_STATUS_ACTIVE, DATA_PROFILING_STATUS_DELETE_PENDING, DATA_PROFILING_STATUS_ERROR, DATA_PROFILING_STATUS_FAILED, DATA_PROFILING_STATUS_PENDING
    assetsDir String
    (string) - Field for specifying the absolute path to a custom directory to store data-monitoring assets. Normally prepopulated to a default user location via UI and Python APIs
    baselineTableName String
    (string) - Baseline table name. Baseline data is used to compute drift from the data in the monitored table_name. The baseline table and the monitored table shall have the same schema
    customMetrics List<Property Map>
    (list of DataProfilingCustomMetric) - Custom metrics
    inferenceLog Property Map
    (InferenceLogConfig) - Analysis Configuration for monitoring inference log tables
    notificationSettings Property Map
    (NotificationSettings) - Field for specifying notification settings
    schedule Property Map
    (CronSchedule) - The cron schedule
    skipBuiltinDashboard Boolean
    (boolean) - Whether to skip creating a default dashboard summarizing data quality metrics
    slicingExprs List<String>
    (list of string) - List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For example slicing_exprs=[“col_1”, “col_2 > 10”] will generate the following slices: two slices for col_2 </span>> 10 (True and False), and one slice per unique value in col1. For high-cardinality columns, only the top 100 unique values by frequency will generate slices
    snapshot Property Map
    (SnapshotConfig) - Analysis Configuration for monitoring snapshot tables
    timeSeries Property Map
    (TimeSeriesConfig) - Analysis Configuration for monitoring time series tables
    warehouseId String
    (string) - Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used

    GetDataQualityMonitorsMonitorDataProfilingConfigCustomMetric

    Definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    InputColumns List<string>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    Name string
    (string) - Name of the metric in the output tables
    OutputDataType string
    (string) - The output type of the custom metric
    Type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    Definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    InputColumns []string
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    Name string
    (string) - Name of the metric in the output tables
    OutputDataType string
    (string) - The output type of the custom metric
    Type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition String
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns List<String>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name String
    (string) - Name of the metric in the output tables
    outputDataType String
    (string) - The output type of the custom metric
    type String
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition string
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns string[]
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name string
    (string) - Name of the metric in the output tables
    outputDataType string
    (string) - The output type of the custom metric
    type string
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition str
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    input_columns Sequence[str]
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name str
    (string) - Name of the metric in the output tables
    output_data_type str
    (string) - The output type of the custom metric
    type str
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT
    definition String
    (string) - Jinja template for a SQL expression that specifies how to compute the metric. See create metric definition
    inputColumns List<String>
    (list of string) - A list of column names in the input table the metric should be computed for. Can use ":table" to indicate that the metric needs information from multiple columns
    name String
    (string) - Name of the metric in the output tables
    outputDataType String
    (string) - The output type of the custom metric
    type String
    (string) - The type of the custom metric. Possible values are: DATA_PROFILING_CUSTOM_METRIC_TYPE_AGGREGATE, DATA_PROFILING_CUSTOM_METRIC_TYPE_DERIVED, DATA_PROFILING_CUSTOM_METRIC_TYPE_DRIFT

    GetDataQualityMonitorsMonitorDataProfilingConfigInferenceLog

    Granularities List<string>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    ModelIdColumn string
    (string) - Column for the model identifier
    PredictionColumn string
    (string) - Column for the prediction
    ProblemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    TimestampColumn string
    (string) - Column for the timestamp
    LabelColumn string
    (string) - Column for the label
    Granularities []string
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    ModelIdColumn string
    (string) - Column for the model identifier
    PredictionColumn string
    (string) - Column for the prediction
    ProblemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    TimestampColumn string
    (string) - Column for the timestamp
    LabelColumn string
    (string) - Column for the label
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn String
    (string) - Column for the model identifier
    predictionColumn String
    (string) - Column for the prediction
    problemType String
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn String
    (string) - Column for the timestamp
    labelColumn String
    (string) - Column for the label
    granularities string[]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn string
    (string) - Column for the model identifier
    predictionColumn string
    (string) - Column for the prediction
    problemType string
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn string
    (string) - Column for the timestamp
    labelColumn string
    (string) - Column for the label
    granularities Sequence[str]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    model_id_column str
    (string) - Column for the model identifier
    prediction_column str
    (string) - Column for the prediction
    problem_type str
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestamp_column str
    (string) - Column for the timestamp
    label_column str
    (string) - Column for the label
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    modelIdColumn String
    (string) - Column for the model identifier
    predictionColumn String
    (string) - Column for the prediction
    problemType String
    (string) - Problem type the model aims to solve. Possible values are: INFERENCE_PROBLEM_TYPE_CLASSIFICATION, INFERENCE_PROBLEM_TYPE_REGRESSION
    timestampColumn String
    (string) - Column for the timestamp
    labelColumn String
    (string) - Column for the label

    GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettings

    OnFailure GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    OnFailure GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    on_failure GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure
    (NotificationDestination) - Destinations to send notifications on failure/timeout
    onFailure Property Map
    (NotificationDestination) - Destinations to send notifications on failure/timeout

    GetDataQualityMonitorsMonitorDataProfilingConfigNotificationSettingsOnFailure

    EmailAddresses List<string>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    EmailAddresses []string
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses List<String>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses string[]
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    email_addresses Sequence[str]
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported
    emailAddresses List<String>
    (list of string) - The list of email addresses to send the notification to. A maximum of 5 email addresses is supported

    GetDataQualityMonitorsMonitorDataProfilingConfigSchedule

    PauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    QuartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    TimezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    PauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    QuartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    TimezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus String
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression String
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId String
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus string
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression string
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId string
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pause_status str
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartz_cron_expression str
    (string) - The expression that determines when to run the monitor. See examples
    timezone_id str
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression
    pauseStatus String
    (string) - Read only field that indicates whether the schedule is paused or not. Possible values are: CRON_SCHEDULE_PAUSE_STATUS_PAUSED, CRON_SCHEDULE_PAUSE_STATUS_UNPAUSED
    quartzCronExpression String
    (string) - The expression that determines when to run the monitor. See examples
    timezoneId String
    (string) - A Java timezone id. The schedule for a job will be resolved with respect to this timezone. See Java TimeZone <http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html>_ for details. The timezone id (e.g., America/Los_Angeles) in which to evaluate the quartz expression

    GetDataQualityMonitorsMonitorDataProfilingConfigTimeSeries

    Granularities List<string>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    TimestampColumn string
    (string) - Column for the timestamp
    Granularities []string
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    TimestampColumn string
    (string) - Column for the timestamp
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn String
    (string) - Column for the timestamp
    granularities string[]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn string
    (string) - Column for the timestamp
    granularities Sequence[str]
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestamp_column str
    (string) - Column for the timestamp
    granularities List<String>
    (list of string) - List of granularities to use when aggregating data into time windows based on their timestamp
    timestampColumn String
    (string) - Column for the timestamp

    Package Details

    Repository
    databricks pulumi/pulumi-databricks
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the databricks Terraform Provider.
    databricks logo
    Databricks v1.78.0 published on Friday, Nov 7, 2025 by Pulumi
      Meet Neo: Your AI Platform Teammate