databricks.MlflowModel
Explore with Pulumi AI
This resource allows you to create MLflow models in Databricks.
Access Control
- databricks.Permissions can control which groups or individual users can Read, Edit, Manage Staging Versions, Manage Production Versions, and Manage individual models.
Related Resources
The following resources are often used in the same context:
- End to end workspace management guide.
- databricks.ModelServing to serve this model on a Databricks serving endpoint.
- databricks.Directory to manage directories in Databricks Workspace.
- databricks.MlflowExperiment to manage MLflow experiments in Databricks.
- databricks.Notebook to manage Databricks Notebooks.
- databricks.Notebook data to export a notebook from Databricks Workspace.
- databricks.Repo to manage Databricks Repos.
Example Usage
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var test = new Databricks.MlflowModel("test", new()
{
Description = "My MLflow model description",
Tags = new[]
{
new Databricks.Inputs.MlflowModelTagArgs
{
Key = "key1",
Value = "value1",
},
new Databricks.Inputs.MlflowModelTagArgs
{
Key = "key2",
Value = "value2",
},
},
});
});
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := databricks.NewMlflowModel(ctx, "test", &databricks.MlflowModelArgs{
Description: pulumi.String("My MLflow model description"),
Tags: databricks.MlflowModelTagArray{
&databricks.MlflowModelTagArgs{
Key: pulumi.String("key1"),
Value: pulumi.String("value1"),
},
&databricks.MlflowModelTagArgs{
Key: pulumi.String("key2"),
Value: pulumi.String("value2"),
},
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.MlflowModel;
import com.pulumi.databricks.MlflowModelArgs;
import com.pulumi.databricks.inputs.MlflowModelTagArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var test = new MlflowModel("test", MlflowModelArgs.builder()
.description("My MLflow model description")
.tags(
MlflowModelTagArgs.builder()
.key("key1")
.value("value1")
.build(),
MlflowModelTagArgs.builder()
.key("key2")
.value("value2")
.build())
.build());
}
}
import pulumi
import pulumi_databricks as databricks
test = databricks.MlflowModel("test",
description="My MLflow model description",
tags=[
databricks.MlflowModelTagArgs(
key="key1",
value="value1",
),
databricks.MlflowModelTagArgs(
key="key2",
value="value2",
),
])
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const test = new databricks.MlflowModel("test", {
description: "My MLflow model description",
tags: [
{
key: "key1",
value: "value1",
},
{
key: "key2",
value: "value2",
},
],
});
resources:
test:
type: databricks:MlflowModel
properties:
description: My MLflow model description
tags:
- key: key1
value: value1
- key: key2
value: value2
Create MlflowModel Resource
new MlflowModel(name: string, args?: MlflowModelArgs, opts?: CustomResourceOptions);
@overload
def MlflowModel(resource_name: str,
opts: Optional[ResourceOptions] = None,
creation_timestamp: Optional[int] = None,
description: Optional[str] = None,
last_updated_timestamp: Optional[int] = None,
name: Optional[str] = None,
registered_model_id: Optional[str] = None,
tags: Optional[Sequence[MlflowModelTagArgs]] = None,
user_id: Optional[str] = None)
@overload
def MlflowModel(resource_name: str,
args: Optional[MlflowModelArgs] = None,
opts: Optional[ResourceOptions] = None)
func NewMlflowModel(ctx *Context, name string, args *MlflowModelArgs, opts ...ResourceOption) (*MlflowModel, error)
public MlflowModel(string name, MlflowModelArgs? args = null, CustomResourceOptions? opts = null)
public MlflowModel(String name, MlflowModelArgs args)
public MlflowModel(String name, MlflowModelArgs args, CustomResourceOptions options)
type: databricks:MlflowModel
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args MlflowModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args MlflowModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args MlflowModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args MlflowModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args MlflowModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
MlflowModel Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The MlflowModel resource accepts the following input properties:
- Creation
Timestamp int - Description string
The description of the MLflow model.
- Last
Updated intTimestamp - Name string
Name of MLflow model. Change of name triggers new resource.
- Registered
Model stringId - List<Mlflow
Model Tag Args> Tags for the MLflow model.
- User
Id string
- Creation
Timestamp int - Description string
The description of the MLflow model.
- Last
Updated intTimestamp - Name string
Name of MLflow model. Change of name triggers new resource.
- Registered
Model stringId - []Mlflow
Model Tag Args Tags for the MLflow model.
- User
Id string
- creation
Timestamp Integer - description String
The description of the MLflow model.
- last
Updated IntegerTimestamp - name String
Name of MLflow model. Change of name triggers new resource.
- registered
Model StringId - List<Mlflow
Model Tag Args> Tags for the MLflow model.
- user
Id String
- creation
Timestamp number - description string
The description of the MLflow model.
- last
Updated numberTimestamp - name string
Name of MLflow model. Change of name triggers new resource.
- registered
Model stringId - Mlflow
Model Tag Args[] Tags for the MLflow model.
- user
Id string
- creation_
timestamp int - description str
The description of the MLflow model.
- last_
updated_ inttimestamp - name str
Name of MLflow model. Change of name triggers new resource.
- registered_
model_ strid - Sequence[Mlflow
Model Tag Args] Tags for the MLflow model.
- user_
id str
- creation
Timestamp Number - description String
The description of the MLflow model.
- last
Updated NumberTimestamp - name String
Name of MLflow model. Change of name triggers new resource.
- registered
Model StringId - List<Property Map>
Tags for the MLflow model.
- user
Id String
Outputs
All input properties are implicitly available as output properties. Additionally, the MlflowModel resource produces the following output properties:
- Id string
The provider-assigned unique ID for this managed resource.
- Id string
The provider-assigned unique ID for this managed resource.
- id String
The provider-assigned unique ID for this managed resource.
- id string
The provider-assigned unique ID for this managed resource.
- id str
The provider-assigned unique ID for this managed resource.
- id String
The provider-assigned unique ID for this managed resource.
Look up Existing MlflowModel Resource
Get an existing MlflowModel resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: MlflowModelState, opts?: CustomResourceOptions): MlflowModel
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
creation_timestamp: Optional[int] = None,
description: Optional[str] = None,
last_updated_timestamp: Optional[int] = None,
name: Optional[str] = None,
registered_model_id: Optional[str] = None,
tags: Optional[Sequence[MlflowModelTagArgs]] = None,
user_id: Optional[str] = None) -> MlflowModel
func GetMlflowModel(ctx *Context, name string, id IDInput, state *MlflowModelState, opts ...ResourceOption) (*MlflowModel, error)
public static MlflowModel Get(string name, Input<string> id, MlflowModelState? state, CustomResourceOptions? opts = null)
public static MlflowModel get(String name, Output<String> id, MlflowModelState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Creation
Timestamp int - Description string
The description of the MLflow model.
- Last
Updated intTimestamp - Name string
Name of MLflow model. Change of name triggers new resource.
- Registered
Model stringId - List<Mlflow
Model Tag Args> Tags for the MLflow model.
- User
Id string
- Creation
Timestamp int - Description string
The description of the MLflow model.
- Last
Updated intTimestamp - Name string
Name of MLflow model. Change of name triggers new resource.
- Registered
Model stringId - []Mlflow
Model Tag Args Tags for the MLflow model.
- User
Id string
- creation
Timestamp Integer - description String
The description of the MLflow model.
- last
Updated IntegerTimestamp - name String
Name of MLflow model. Change of name triggers new resource.
- registered
Model StringId - List<Mlflow
Model Tag Args> Tags for the MLflow model.
- user
Id String
- creation
Timestamp number - description string
The description of the MLflow model.
- last
Updated numberTimestamp - name string
Name of MLflow model. Change of name triggers new resource.
- registered
Model stringId - Mlflow
Model Tag Args[] Tags for the MLflow model.
- user
Id string
- creation_
timestamp int - description str
The description of the MLflow model.
- last_
updated_ inttimestamp - name str
Name of MLflow model. Change of name triggers new resource.
- registered_
model_ strid - Sequence[Mlflow
Model Tag Args] Tags for the MLflow model.
- user_
id str
- creation
Timestamp Number - description String
The description of the MLflow model.
- last
Updated NumberTimestamp - name String
Name of MLflow model. Change of name triggers new resource.
- registered
Model StringId - List<Property Map>
Tags for the MLflow model.
- user
Id String
Supporting Types
MlflowModelTag
Import
The model resource can be imported using the name bash
$ pulumi import databricks:index/mlflowModel:MlflowModel this <name>
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
This Pulumi package is based on the
databricks
Terraform Provider.