databricks.ModelServingProvisionedThroughput
Explore with Pulumi AI
This resource allows you to manage Foundation Model provisioned throughput endpoints in Databricks.
This resource is currently in private preview, and only available for enrolled customers.
This resource can only be used with a workspace-level provider!
Example Usage
Creating a Foundation Model provisioned throughput endpoint
import * as pulumi from "@pulumi/pulumi";
import * as databricks from "@pulumi/databricks";
const llama = new databricks.ModelServingProvisionedThroughput("llama", {
aiGateway: {
usageTrackingConfig: {
enabled: true,
},
},
config: {
servedEntities: [{
entityName: "system.ai.llama-4-maverick",
entityVersion: "1",
provisionedModelUnits: 100,
}],
},
});
import pulumi
import pulumi_databricks as databricks
llama = databricks.ModelServingProvisionedThroughput("llama",
ai_gateway={
"usage_tracking_config": {
"enabled": True,
},
},
config={
"served_entities": [{
"entity_name": "system.ai.llama-4-maverick",
"entity_version": "1",
"provisioned_model_units": 100,
}],
})
package main
import (
"github.com/pulumi/pulumi-databricks/sdk/go/databricks"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := databricks.NewModelServingProvisionedThroughput(ctx, "llama", &databricks.ModelServingProvisionedThroughputArgs{
AiGateway: &databricks.ModelServingProvisionedThroughputAiGatewayArgs{
UsageTrackingConfig: &databricks.ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs{
Enabled: pulumi.Bool(true),
},
},
Config: &databricks.ModelServingProvisionedThroughputConfigArgs{
ServedEntities: databricks.ModelServingProvisionedThroughputConfigServedEntityArray{
&databricks.ModelServingProvisionedThroughputConfigServedEntityArgs{
EntityName: pulumi.String("system.ai.llama-4-maverick"),
EntityVersion: pulumi.String("1"),
ProvisionedModelUnits: pulumi.Int(100),
},
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Databricks = Pulumi.Databricks;
return await Deployment.RunAsync(() =>
{
var llama = new Databricks.ModelServingProvisionedThroughput("llama", new()
{
AiGateway = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayArgs
{
UsageTrackingConfig = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs
{
Enabled = true,
},
},
Config = new Databricks.Inputs.ModelServingProvisionedThroughputConfigArgs
{
ServedEntities = new[]
{
new Databricks.Inputs.ModelServingProvisionedThroughputConfigServedEntityArgs
{
EntityName = "system.ai.llama-4-maverick",
EntityVersion = "1",
ProvisionedModelUnits = 100,
},
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.databricks.ModelServingProvisionedThroughput;
import com.pulumi.databricks.ModelServingProvisionedThroughputArgs;
import com.pulumi.databricks.inputs.ModelServingProvisionedThroughputAiGatewayArgs;
import com.pulumi.databricks.inputs.ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs;
import com.pulumi.databricks.inputs.ModelServingProvisionedThroughputConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var llama = new ModelServingProvisionedThroughput("llama", ModelServingProvisionedThroughputArgs.builder()
.aiGateway(ModelServingProvisionedThroughputAiGatewayArgs.builder()
.usageTrackingConfig(ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs.builder()
.enabled(true)
.build())
.build())
.config(ModelServingProvisionedThroughputConfigArgs.builder()
.servedEntities(ModelServingProvisionedThroughputConfigServedEntityArgs.builder()
.entityName("system.ai.llama-4-maverick")
.entityVersion("1")
.provisionedModelUnits(100)
.build())
.build())
.build());
}
}
resources:
llama:
type: databricks:ModelServingProvisionedThroughput
properties:
aiGateway:
usageTrackingConfig:
enabled: true
config:
servedEntities:
- entityName: system.ai.llama-4-maverick
entityVersion: '1'
provisionedModelUnits: 100
Access Control
- databricks.Permissions can control which groups or individual users can Manage, Query or View individual serving endpoints.
Related Resources
The following resources are often used in the same context:
- databricks.ModelServing to create custom and external serving endpoints in Databricks.
- databricks.RegisteredModel to create Models in Unity Catalog in Databricks.
- End to end workspace management guide.
- databricks.Directory to manage directories in Databricks Workspace.
- databricks.MlflowModel to create models in the workspace model registry in Databricks.
- databricks.Notebook to manage Databricks Notebooks.
- databricks.Notebook data to export a notebook from Databricks Workspace.
- databricks.Repo to manage Databricks Repos.
Create ModelServingProvisionedThroughput Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new ModelServingProvisionedThroughput(name: string, args: ModelServingProvisionedThroughputArgs, opts?: CustomResourceOptions);
@overload
def ModelServingProvisionedThroughput(resource_name: str,
args: ModelServingProvisionedThroughputArgs,
opts: Optional[ResourceOptions] = None)
@overload
def ModelServingProvisionedThroughput(resource_name: str,
opts: Optional[ResourceOptions] = None,
config: Optional[ModelServingProvisionedThroughputConfigArgs] = None,
ai_gateway: Optional[ModelServingProvisionedThroughputAiGatewayArgs] = None,
budget_policy_id: Optional[str] = None,
name: Optional[str] = None,
tags: Optional[Sequence[ModelServingProvisionedThroughputTagArgs]] = None)
func NewModelServingProvisionedThroughput(ctx *Context, name string, args ModelServingProvisionedThroughputArgs, opts ...ResourceOption) (*ModelServingProvisionedThroughput, error)
public ModelServingProvisionedThroughput(string name, ModelServingProvisionedThroughputArgs args, CustomResourceOptions? opts = null)
public ModelServingProvisionedThroughput(String name, ModelServingProvisionedThroughputArgs args)
public ModelServingProvisionedThroughput(String name, ModelServingProvisionedThroughputArgs args, CustomResourceOptions options)
type: databricks:ModelServingProvisionedThroughput
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelServingProvisionedThroughputArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelServingProvisionedThroughputArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelServingProvisionedThroughputArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelServingProvisionedThroughputArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelServingProvisionedThroughputArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var modelServingProvisionedThroughputResource = new Databricks.ModelServingProvisionedThroughput("modelServingProvisionedThroughputResource", new()
{
Config = new Databricks.Inputs.ModelServingProvisionedThroughputConfigArgs
{
ServedEntities = new[]
{
new Databricks.Inputs.ModelServingProvisionedThroughputConfigServedEntityArgs
{
EntityName = "string",
EntityVersion = "string",
ProvisionedModelUnits = 0,
Name = "string",
},
},
TrafficConfig = new Databricks.Inputs.ModelServingProvisionedThroughputConfigTrafficConfigArgs
{
Routes = new[]
{
new Databricks.Inputs.ModelServingProvisionedThroughputConfigTrafficConfigRouteArgs
{
ServedModelName = "string",
TrafficPercentage = 0,
},
},
},
},
AiGateway = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayArgs
{
FallbackConfig = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayFallbackConfigArgs
{
Enabled = false,
},
Guardrails = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayGuardrailsArgs
{
Input = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayGuardrailsInputArgs
{
InvalidKeywords = new[]
{
"string",
},
Pii = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayGuardrailsInputPiiArgs
{
Behavior = "string",
},
Safety = false,
ValidTopics = new[]
{
"string",
},
},
Output = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayGuardrailsOutputArgs
{
InvalidKeywords = new[]
{
"string",
},
Pii = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayGuardrailsOutputPiiArgs
{
Behavior = "string",
},
Safety = false,
ValidTopics = new[]
{
"string",
},
},
},
InferenceTableConfig = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayInferenceTableConfigArgs
{
CatalogName = "string",
Enabled = false,
SchemaName = "string",
TableNamePrefix = "string",
},
RateLimits = new[]
{
new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayRateLimitArgs
{
Calls = 0,
RenewalPeriod = "string",
Key = "string",
},
},
UsageTrackingConfig = new Databricks.Inputs.ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs
{
Enabled = false,
},
},
BudgetPolicyId = "string",
Name = "string",
Tags = new[]
{
new Databricks.Inputs.ModelServingProvisionedThroughputTagArgs
{
Key = "string",
Value = "string",
},
},
});
example, err := databricks.NewModelServingProvisionedThroughput(ctx, "modelServingProvisionedThroughputResource", &databricks.ModelServingProvisionedThroughputArgs{
Config: &databricks.ModelServingProvisionedThroughputConfigArgs{
ServedEntities: databricks.ModelServingProvisionedThroughputConfigServedEntityArray{
&databricks.ModelServingProvisionedThroughputConfigServedEntityArgs{
EntityName: pulumi.String("string"),
EntityVersion: pulumi.String("string"),
ProvisionedModelUnits: pulumi.Int(0),
Name: pulumi.String("string"),
},
},
TrafficConfig: &databricks.ModelServingProvisionedThroughputConfigTrafficConfigArgs{
Routes: databricks.ModelServingProvisionedThroughputConfigTrafficConfigRouteArray{
&databricks.ModelServingProvisionedThroughputConfigTrafficConfigRouteArgs{
ServedModelName: pulumi.String("string"),
TrafficPercentage: pulumi.Int(0),
},
},
},
},
AiGateway: &databricks.ModelServingProvisionedThroughputAiGatewayArgs{
FallbackConfig: &databricks.ModelServingProvisionedThroughputAiGatewayFallbackConfigArgs{
Enabled: pulumi.Bool(false),
},
Guardrails: &databricks.ModelServingProvisionedThroughputAiGatewayGuardrailsArgs{
Input: &databricks.ModelServingProvisionedThroughputAiGatewayGuardrailsInputTypeArgs{
InvalidKeywords: pulumi.StringArray{
pulumi.String("string"),
},
Pii: &databricks.ModelServingProvisionedThroughputAiGatewayGuardrailsInputPiiArgs{
Behavior: pulumi.String("string"),
},
Safety: pulumi.Bool(false),
ValidTopics: pulumi.StringArray{
pulumi.String("string"),
},
},
Output: &databricks.ModelServingProvisionedThroughputAiGatewayGuardrailsOutputTypeArgs{
InvalidKeywords: pulumi.StringArray{
pulumi.String("string"),
},
Pii: &databricks.ModelServingProvisionedThroughputAiGatewayGuardrailsOutputPiiArgs{
Behavior: pulumi.String("string"),
},
Safety: pulumi.Bool(false),
ValidTopics: pulumi.StringArray{
pulumi.String("string"),
},
},
},
InferenceTableConfig: &databricks.ModelServingProvisionedThroughputAiGatewayInferenceTableConfigArgs{
CatalogName: pulumi.String("string"),
Enabled: pulumi.Bool(false),
SchemaName: pulumi.String("string"),
TableNamePrefix: pulumi.String("string"),
},
RateLimits: databricks.ModelServingProvisionedThroughputAiGatewayRateLimitArray{
&databricks.ModelServingProvisionedThroughputAiGatewayRateLimitArgs{
Calls: pulumi.Int(0),
RenewalPeriod: pulumi.String("string"),
Key: pulumi.String("string"),
},
},
UsageTrackingConfig: &databricks.ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs{
Enabled: pulumi.Bool(false),
},
},
BudgetPolicyId: pulumi.String("string"),
Name: pulumi.String("string"),
Tags: databricks.ModelServingProvisionedThroughputTagArray{
&databricks.ModelServingProvisionedThroughputTagArgs{
Key: pulumi.String("string"),
Value: pulumi.String("string"),
},
},
})
var modelServingProvisionedThroughputResource = new ModelServingProvisionedThroughput("modelServingProvisionedThroughputResource", ModelServingProvisionedThroughputArgs.builder()
.config(ModelServingProvisionedThroughputConfigArgs.builder()
.servedEntities(ModelServingProvisionedThroughputConfigServedEntityArgs.builder()
.entityName("string")
.entityVersion("string")
.provisionedModelUnits(0)
.name("string")
.build())
.trafficConfig(ModelServingProvisionedThroughputConfigTrafficConfigArgs.builder()
.routes(ModelServingProvisionedThroughputConfigTrafficConfigRouteArgs.builder()
.servedModelName("string")
.trafficPercentage(0)
.build())
.build())
.build())
.aiGateway(ModelServingProvisionedThroughputAiGatewayArgs.builder()
.fallbackConfig(ModelServingProvisionedThroughputAiGatewayFallbackConfigArgs.builder()
.enabled(false)
.build())
.guardrails(ModelServingProvisionedThroughputAiGatewayGuardrailsArgs.builder()
.input(ModelServingProvisionedThroughputAiGatewayGuardrailsInputArgs.builder()
.invalidKeywords("string")
.pii(ModelServingProvisionedThroughputAiGatewayGuardrailsInputPiiArgs.builder()
.behavior("string")
.build())
.safety(false)
.validTopics("string")
.build())
.output(ModelServingProvisionedThroughputAiGatewayGuardrailsOutputArgs.builder()
.invalidKeywords("string")
.pii(ModelServingProvisionedThroughputAiGatewayGuardrailsOutputPiiArgs.builder()
.behavior("string")
.build())
.safety(false)
.validTopics("string")
.build())
.build())
.inferenceTableConfig(ModelServingProvisionedThroughputAiGatewayInferenceTableConfigArgs.builder()
.catalogName("string")
.enabled(false)
.schemaName("string")
.tableNamePrefix("string")
.build())
.rateLimits(ModelServingProvisionedThroughputAiGatewayRateLimitArgs.builder()
.calls(0)
.renewalPeriod("string")
.key("string")
.build())
.usageTrackingConfig(ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs.builder()
.enabled(false)
.build())
.build())
.budgetPolicyId("string")
.name("string")
.tags(ModelServingProvisionedThroughputTagArgs.builder()
.key("string")
.value("string")
.build())
.build());
model_serving_provisioned_throughput_resource = databricks.ModelServingProvisionedThroughput("modelServingProvisionedThroughputResource",
config={
"served_entities": [{
"entity_name": "string",
"entity_version": "string",
"provisioned_model_units": 0,
"name": "string",
}],
"traffic_config": {
"routes": [{
"served_model_name": "string",
"traffic_percentage": 0,
}],
},
},
ai_gateway={
"fallback_config": {
"enabled": False,
},
"guardrails": {
"input": {
"invalid_keywords": ["string"],
"pii": {
"behavior": "string",
},
"safety": False,
"valid_topics": ["string"],
},
"output": {
"invalid_keywords": ["string"],
"pii": {
"behavior": "string",
},
"safety": False,
"valid_topics": ["string"],
},
},
"inference_table_config": {
"catalog_name": "string",
"enabled": False,
"schema_name": "string",
"table_name_prefix": "string",
},
"rate_limits": [{
"calls": 0,
"renewal_period": "string",
"key": "string",
}],
"usage_tracking_config": {
"enabled": False,
},
},
budget_policy_id="string",
name="string",
tags=[{
"key": "string",
"value": "string",
}])
const modelServingProvisionedThroughputResource = new databricks.ModelServingProvisionedThroughput("modelServingProvisionedThroughputResource", {
config: {
servedEntities: [{
entityName: "string",
entityVersion: "string",
provisionedModelUnits: 0,
name: "string",
}],
trafficConfig: {
routes: [{
servedModelName: "string",
trafficPercentage: 0,
}],
},
},
aiGateway: {
fallbackConfig: {
enabled: false,
},
guardrails: {
input: {
invalidKeywords: ["string"],
pii: {
behavior: "string",
},
safety: false,
validTopics: ["string"],
},
output: {
invalidKeywords: ["string"],
pii: {
behavior: "string",
},
safety: false,
validTopics: ["string"],
},
},
inferenceTableConfig: {
catalogName: "string",
enabled: false,
schemaName: "string",
tableNamePrefix: "string",
},
rateLimits: [{
calls: 0,
renewalPeriod: "string",
key: "string",
}],
usageTrackingConfig: {
enabled: false,
},
},
budgetPolicyId: "string",
name: "string",
tags: [{
key: "string",
value: "string",
}],
});
type: databricks:ModelServingProvisionedThroughput
properties:
aiGateway:
fallbackConfig:
enabled: false
guardrails:
input:
invalidKeywords:
- string
pii:
behavior: string
safety: false
validTopics:
- string
output:
invalidKeywords:
- string
pii:
behavior: string
safety: false
validTopics:
- string
inferenceTableConfig:
catalogName: string
enabled: false
schemaName: string
tableNamePrefix: string
rateLimits:
- calls: 0
key: string
renewalPeriod: string
usageTrackingConfig:
enabled: false
budgetPolicyId: string
config:
servedEntities:
- entityName: string
entityVersion: string
name: string
provisionedModelUnits: 0
trafficConfig:
routes:
- servedModelName: string
trafficPercentage: 0
name: string
tags:
- key: string
value: string
ModelServingProvisionedThroughput Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The ModelServingProvisionedThroughput resource accepts the following input properties:
- Config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- Ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- Budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- Name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- List<Model
Serving Provisioned Throughput Tag> - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- Config
Model
Serving Provisioned Throughput Config Args - The model serving endpoint configuration.
- Ai
Gateway ModelServing Provisioned Throughput Ai Gateway Args - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- Budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- Name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- []Model
Serving Provisioned Throughput Tag Args - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy StringId - The Budget Policy ID set for this serving endpoint.
- name String
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- List<Model
Serving Provisioned Throughput Tag> - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- Model
Serving Provisioned Throughput Tag[] - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- config
Model
Serving Provisioned Throughput Config Args - The model serving endpoint configuration.
- ai_
gateway ModelServing Provisioned Throughput Ai Gateway Args - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget_
policy_ strid - The Budget Policy ID set for this serving endpoint.
- name str
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- Sequence[Model
Serving Provisioned Throughput Tag Args] - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- config Property Map
- The model serving endpoint configuration.
- ai
Gateway Property Map - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy StringId - The Budget Policy ID set for this serving endpoint.
- name String
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- List<Property Map>
- Tags to be attached to the serving endpoint and automatically propagated to billing logs.
Outputs
All input properties are implicitly available as output properties. Additionally, the ModelServingProvisionedThroughput resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- Id string
- The provider-assigned unique ID for this managed resource.
- Serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- id String
- The provider-assigned unique ID for this managed resource.
- serving
Endpoint StringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- id string
- The provider-assigned unique ID for this managed resource.
- serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- id str
- The provider-assigned unique ID for this managed resource.
- serving_
endpoint_ strid - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- id String
- The provider-assigned unique ID for this managed resource.
- serving
Endpoint StringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
Look up Existing ModelServingProvisionedThroughput Resource
Get an existing ModelServingProvisionedThroughput resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelServingProvisionedThroughputState, opts?: CustomResourceOptions): ModelServingProvisionedThroughput
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
ai_gateway: Optional[ModelServingProvisionedThroughputAiGatewayArgs] = None,
budget_policy_id: Optional[str] = None,
config: Optional[ModelServingProvisionedThroughputConfigArgs] = None,
name: Optional[str] = None,
serving_endpoint_id: Optional[str] = None,
tags: Optional[Sequence[ModelServingProvisionedThroughputTagArgs]] = None) -> ModelServingProvisionedThroughput
func GetModelServingProvisionedThroughput(ctx *Context, name string, id IDInput, state *ModelServingProvisionedThroughputState, opts ...ResourceOption) (*ModelServingProvisionedThroughput, error)
public static ModelServingProvisionedThroughput Get(string name, Input<string> id, ModelServingProvisionedThroughputState? state, CustomResourceOptions? opts = null)
public static ModelServingProvisionedThroughput get(String name, Output<String> id, ModelServingProvisionedThroughputState state, CustomResourceOptions options)
resources: _: type: databricks:ModelServingProvisionedThroughput get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- Budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- Config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- Name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- Serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- List<Model
Serving Provisioned Throughput Tag> - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- Ai
Gateway ModelServing Provisioned Throughput Ai Gateway Args - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- Budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- Config
Model
Serving Provisioned Throughput Config Args - The model serving endpoint configuration.
- Name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- Serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- []Model
Serving Provisioned Throughput Tag Args - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy StringId - The Budget Policy ID set for this serving endpoint.
- config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- name String
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- serving
Endpoint StringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- List<Model
Serving Provisioned Throughput Tag> - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- ai
Gateway ModelServing Provisioned Throughput Ai Gateway - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy stringId - The Budget Policy ID set for this serving endpoint.
- config
Model
Serving Provisioned Throughput Config - The model serving endpoint configuration.
- name string
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- serving
Endpoint stringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- Model
Serving Provisioned Throughput Tag[] - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- ai_
gateway ModelServing Provisioned Throughput Ai Gateway Args - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget_
policy_ strid - The Budget Policy ID set for this serving endpoint.
- config
Model
Serving Provisioned Throughput Config Args - The model serving endpoint configuration.
- name str
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- serving_
endpoint_ strid - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- Sequence[Model
Serving Provisioned Throughput Tag Args] - Tags to be attached to the serving endpoint and automatically propagated to billing logs.
- ai
Gateway Property Map - A block with AI Gateway configuration for the serving endpoint. Note: only external model endpoints are supported as of now.
- budget
Policy StringId - The Budget Policy ID set for this serving endpoint.
- config Property Map
- The model serving endpoint configuration.
- name String
- The name of the model serving endpoint. This field is required and must be unique across a workspace. An endpoint name can consist of alphanumeric characters, dashes, and underscores. NOTE: Changing this name will delete the existing endpoint and create a new endpoint with the updated name.
- serving
Endpoint StringId - Unique identifier of the serving endpoint primarily used to set permissions and refer to this instance for other operations.
- List<Property Map>
- Tags to be attached to the serving endpoint and automatically propagated to billing logs.
Supporting Types
ModelServingProvisionedThroughputAiGateway, ModelServingProvisionedThroughputAiGatewayArgs
- Fallback
Config ModelServing Provisioned Throughput Ai Gateway Fallback Config - Guardrails
Model
Serving Provisioned Throughput Ai Gateway Guardrails - Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- Inference
Table ModelConfig Serving Provisioned Throughput Ai Gateway Inference Table Config - Block describing the configuration of usage tracking. Consists of the following attributes:
- Rate
Limits List<ModelServing Provisioned Throughput Ai Gateway Rate Limit> - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - Usage
Tracking ModelConfig Serving Provisioned Throughput Ai Gateway Usage Tracking Config - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
- Fallback
Config ModelServing Provisioned Throughput Ai Gateway Fallback Config - Guardrails
Model
Serving Provisioned Throughput Ai Gateway Guardrails - Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- Inference
Table ModelConfig Serving Provisioned Throughput Ai Gateway Inference Table Config - Block describing the configuration of usage tracking. Consists of the following attributes:
- Rate
Limits []ModelServing Provisioned Throughput Ai Gateway Rate Limit - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - Usage
Tracking ModelConfig Serving Provisioned Throughput Ai Gateway Usage Tracking Config - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
- fallback
Config ModelServing Provisioned Throughput Ai Gateway Fallback Config - guardrails
Model
Serving Provisioned Throughput Ai Gateway Guardrails - Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- inference
Table ModelConfig Serving Provisioned Throughput Ai Gateway Inference Table Config - Block describing the configuration of usage tracking. Consists of the following attributes:
- rate
Limits List<ModelServing Provisioned Throughput Ai Gateway Rate Limit> - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - usage
Tracking ModelConfig Serving Provisioned Throughput Ai Gateway Usage Tracking Config - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
- fallback
Config ModelServing Provisioned Throughput Ai Gateway Fallback Config - guardrails
Model
Serving Provisioned Throughput Ai Gateway Guardrails - Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- inference
Table ModelConfig Serving Provisioned Throughput Ai Gateway Inference Table Config - Block describing the configuration of usage tracking. Consists of the following attributes:
- rate
Limits ModelServing Provisioned Throughput Ai Gateway Rate Limit[] - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - usage
Tracking ModelConfig Serving Provisioned Throughput Ai Gateway Usage Tracking Config - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
- fallback_
config ModelServing Provisioned Throughput Ai Gateway Fallback Config - guardrails
Model
Serving Provisioned Throughput Ai Gateway Guardrails - Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- inference_
table_ Modelconfig Serving Provisioned Throughput Ai Gateway Inference Table Config - Block describing the configuration of usage tracking. Consists of the following attributes:
- rate_
limits Sequence[ModelServing Provisioned Throughput Ai Gateway Rate Limit] - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - usage_
tracking_ Modelconfig Serving Provisioned Throughput Ai Gateway Usage Tracking Config - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
- fallback
Config Property Map - guardrails Property Map
- Block with configuration for AI Guardrails to prevent unwanted data and unsafe data in requests and responses. Consists of the following attributes:
- inference
Table Property MapConfig - Block describing the configuration of usage tracking. Consists of the following attributes:
- rate
Limits List<Property Map> - Block describing rate limits for AI gateway. For details see the description of
rate_limits
block above. - usage
Tracking Property MapConfig - Block with configuration for payload logging using inference tables. For details see the description of
auto_capture_config
block above.
ModelServingProvisionedThroughputAiGatewayFallbackConfig, ModelServingProvisionedThroughputAiGatewayFallbackConfigArgs
- Enabled bool
- boolean flag specifying if usage tracking is enabled.
- Enabled bool
- boolean flag specifying if usage tracking is enabled.
- enabled Boolean
- boolean flag specifying if usage tracking is enabled.
- enabled boolean
- boolean flag specifying if usage tracking is enabled.
- enabled bool
- boolean flag specifying if usage tracking is enabled.
- enabled Boolean
- boolean flag specifying if usage tracking is enabled.
ModelServingProvisionedThroughputAiGatewayGuardrails, ModelServingProvisionedThroughputAiGatewayGuardrailsArgs
- Input
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input - A block with configuration for input guardrail filters:
- Output
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output - A block with configuration for output guardrail filters. Has the same structure as
input
block.
- Input
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Type - A block with configuration for input guardrail filters:
- Output
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Type - A block with configuration for output guardrail filters. Has the same structure as
input
block.
- input
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input - A block with configuration for input guardrail filters:
- output
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output - A block with configuration for output guardrail filters. Has the same structure as
input
block.
- input
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input - A block with configuration for input guardrail filters:
- output
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output - A block with configuration for output guardrail filters. Has the same structure as
input
block.
- input
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input - A block with configuration for input guardrail filters:
- output
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output - A block with configuration for output guardrail filters. Has the same structure as
input
block.
- input Property Map
- A block with configuration for input guardrail filters:
- output Property Map
- A block with configuration for output guardrail filters. Has the same structure as
input
block.
ModelServingProvisionedThroughputAiGatewayGuardrailsInput, ModelServingProvisionedThroughputAiGatewayGuardrailsInputArgs
- Invalid
Keywords List<string> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- Pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Pii - Block with configuration for guardrail PII filter:
- Safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- Valid
Topics List<string> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- Invalid
Keywords []string - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- Pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Pii - Block with configuration for guardrail PII filter:
- Safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- Valid
Topics []string - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords List<String> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Pii - Block with configuration for guardrail PII filter:
- safety Boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics List<String> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords string[] - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Pii - Block with configuration for guardrail PII filter:
- safety boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics string[] - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid_
keywords Sequence[str] - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Input Pii - Block with configuration for guardrail PII filter:
- safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- valid_
topics Sequence[str] - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords List<String> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii Property Map
- Block with configuration for guardrail PII filter:
- safety Boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics List<String> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
ModelServingProvisionedThroughputAiGatewayGuardrailsInputPii, ModelServingProvisionedThroughputAiGatewayGuardrailsInputPiiArgs
- Behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- Behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior String
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior str
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior String
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
ModelServingProvisionedThroughputAiGatewayGuardrailsOutput, ModelServingProvisionedThroughputAiGatewayGuardrailsOutputArgs
- Invalid
Keywords List<string> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- Pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Pii - Block with configuration for guardrail PII filter:
- Safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- Valid
Topics List<string> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- Invalid
Keywords []string - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- Pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Pii - Block with configuration for guardrail PII filter:
- Safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- Valid
Topics []string - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords List<String> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Pii - Block with configuration for guardrail PII filter:
- safety Boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics List<String> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords string[] - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Pii - Block with configuration for guardrail PII filter:
- safety boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics string[] - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid_
keywords Sequence[str] - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii
Model
Serving Provisioned Throughput Ai Gateway Guardrails Output Pii - Block with configuration for guardrail PII filter:
- safety bool
- the boolean flag that indicates whether the safety filter is enabled.
- valid_
topics Sequence[str] - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
- invalid
Keywords List<String> - List of invalid keywords. AI guardrail uses keyword or string matching to decide if the keyword exists in the request or response content.
- pii Property Map
- Block with configuration for guardrail PII filter:
- safety Boolean
- the boolean flag that indicates whether the safety filter is enabled.
- valid
Topics List<String> - The list of allowed topics. Given a chat request, this guardrail flags the request if its topic is not in the allowed topics.
ModelServingProvisionedThroughputAiGatewayGuardrailsOutputPii, ModelServingProvisionedThroughputAiGatewayGuardrailsOutputPiiArgs
- Behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- Behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior String
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior string
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior str
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
- behavior String
- a string that describes the behavior for PII filter. Currently only
BLOCK
value is supported.
ModelServingProvisionedThroughputAiGatewayInferenceTableConfig, ModelServingProvisionedThroughputAiGatewayInferenceTableConfigArgs
- Catalog
Name string - Enabled bool
- boolean flag specifying if usage tracking is enabled.
- Schema
Name string - Table
Name stringPrefix
- Catalog
Name string - Enabled bool
- boolean flag specifying if usage tracking is enabled.
- Schema
Name string - Table
Name stringPrefix
- catalog
Name String - enabled Boolean
- boolean flag specifying if usage tracking is enabled.
- schema
Name String - table
Name StringPrefix
- catalog
Name string - enabled boolean
- boolean flag specifying if usage tracking is enabled.
- schema
Name string - table
Name stringPrefix
- catalog_
name str - enabled bool
- boolean flag specifying if usage tracking is enabled.
- schema_
name str - table_
name_ strprefix
- catalog
Name String - enabled Boolean
- boolean flag specifying if usage tracking is enabled.
- schema
Name String - table
Name StringPrefix
ModelServingProvisionedThroughputAiGatewayRateLimit, ModelServingProvisionedThroughputAiGatewayRateLimitArgs
- Calls int
- Renewal
Period string - Key string
- The key field for a tag.
- Calls int
- Renewal
Period string - Key string
- The key field for a tag.
- calls Integer
- renewal
Period String - key String
- The key field for a tag.
- calls number
- renewal
Period string - key string
- The key field for a tag.
- calls int
- renewal_
period str - key str
- The key field for a tag.
- calls Number
- renewal
Period String - key String
- The key field for a tag.
ModelServingProvisionedThroughputAiGatewayUsageTrackingConfig, ModelServingProvisionedThroughputAiGatewayUsageTrackingConfigArgs
- Enabled bool
- boolean flag specifying if usage tracking is enabled.
- Enabled bool
- boolean flag specifying if usage tracking is enabled.
- enabled Boolean
- boolean flag specifying if usage tracking is enabled.
- enabled boolean
- boolean flag specifying if usage tracking is enabled.
- enabled bool
- boolean flag specifying if usage tracking is enabled.
- enabled Boolean
- boolean flag specifying if usage tracking is enabled.
ModelServingProvisionedThroughputConfig, ModelServingProvisionedThroughputConfigArgs
- Served
Entities List<ModelServing Provisioned Throughput Config Served Entity> - A list of served entities for the endpoint to serve.
- Traffic
Config ModelServing Provisioned Throughput Config Traffic Config - A single block represents the traffic split configuration amongst the served models.
- Served
Entities []ModelServing Provisioned Throughput Config Served Entity - A list of served entities for the endpoint to serve.
- Traffic
Config ModelServing Provisioned Throughput Config Traffic Config - A single block represents the traffic split configuration amongst the served models.
- served
Entities List<ModelServing Provisioned Throughput Config Served Entity> - A list of served entities for the endpoint to serve.
- traffic
Config ModelServing Provisioned Throughput Config Traffic Config - A single block represents the traffic split configuration amongst the served models.
- served
Entities ModelServing Provisioned Throughput Config Served Entity[] - A list of served entities for the endpoint to serve.
- traffic
Config ModelServing Provisioned Throughput Config Traffic Config - A single block represents the traffic split configuration amongst the served models.
- served_
entities Sequence[ModelServing Provisioned Throughput Config Served Entity] - A list of served entities for the endpoint to serve.
- traffic_
config ModelServing Provisioned Throughput Config Traffic Config - A single block represents the traffic split configuration amongst the served models.
- served
Entities List<Property Map> - A list of served entities for the endpoint to serve.
- traffic
Config Property Map - A single block represents the traffic split configuration amongst the served models.
ModelServingProvisionedThroughputConfigServedEntity, ModelServingProvisionedThroughputConfigServedEntityArgs
- Entity
Name string - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - Entity
Version string - The version of the model in UC to be served.
- Provisioned
Model intUnits - The number of model units to be provisioned.
- Name string
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
- Entity
Name string - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - Entity
Version string - The version of the model in UC to be served.
- Provisioned
Model intUnits - The number of model units to be provisioned.
- Name string
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
- entity
Name String - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - entity
Version String - The version of the model in UC to be served.
- provisioned
Model IntegerUnits - The number of model units to be provisioned.
- name String
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
- entity
Name string - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - entity
Version string - The version of the model in UC to be served.
- provisioned
Model numberUnits - The number of model units to be provisioned.
- name string
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
- entity_
name str - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - entity_
version str - The version of the model in UC to be served.
- provisioned_
model_ intunits - The number of model units to be provisioned.
- name str
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
- entity
Name String - The full path of the UC model to be served, given in the form of
catalog_name.schema_name.model_name
. - entity
Version String - The version of the model in UC to be served.
- provisioned
Model NumberUnits - The number of model units to be provisioned.
- name String
- The name of a served entity. It must be unique across an endpoint. A served entity name can consist of alphanumeric characters, dashes, and underscores. If not specified for an external model, this field will be created from the
entity_name
andentity_version
ModelServingProvisionedThroughputConfigTrafficConfig, ModelServingProvisionedThroughputConfigTrafficConfigArgs
- Routes
List<Model
Serving Provisioned Throughput Config Traffic Config Route> - Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
- Routes
[]Model
Serving Provisioned Throughput Config Traffic Config Route - Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
- routes
List<Model
Serving Provisioned Throughput Config Traffic Config Route> - Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
- routes
Model
Serving Provisioned Throughput Config Traffic Config Route[] - Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
- routes
Sequence[Model
Serving Provisioned Throughput Config Traffic Config Route] - Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
- routes List<Property Map>
- Each block represents a route that defines traffic to each served entity. Each
served_entity
block needs to have a correspondingroutes
block.
ModelServingProvisionedThroughputConfigTrafficConfigRoute, ModelServingProvisionedThroughputConfigTrafficConfigRouteArgs
- Served
Model stringName - Traffic
Percentage int - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
- Served
Model stringName - Traffic
Percentage int - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
- served
Model StringName - traffic
Percentage Integer - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
- served
Model stringName - traffic
Percentage number - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
- served_
model_ strname - traffic_
percentage int - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
- served
Model StringName - traffic
Percentage Number - The percentage of endpoint traffic to send to this route. It must be an integer between 0 and 100 inclusive.
ModelServingProvisionedThroughputTag, ModelServingProvisionedThroughputTagArgs
Import
The model serving provisioned throughput resource can be imported using the name of the endpoint:
hcl
import {
to = databricks_model_serving_provisioned_throughput.this
id = “
}
$ pulumi import databricks:index/modelServingProvisionedThroughput:ModelServingProvisionedThroughput Alternatively, when using Pulumi version 1.4 or earlier, import using the command:
bash
$ pulumi import databricks:index/modelServingProvisionedThroughput:ModelServingProvisionedThroughput this <model-serving-endpoint-name>
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- databricks pulumi/pulumi-databricks
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
databricks
Terraform Provider.