datarobot.RegisteredModelFromLeaderboard
Explore with Pulumi AI

registered model from leaderboard
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as datarobot from "@datarobot/pulumi-datarobot";
const example = new datarobot.RegisteredModelFromLeaderboard("example", {
modelId: "111111111111",
description: "example description",
versionName: "example version name",
predictionThreshold: 0.5,
computeAllTsIntervals: true,
distributionPredictionModelId: "222222222222",
useCaseIds: [datarobot_use_case.example.id],
});
export const datarobotRegisteredModelFromLeaderboardId = example.id;
export const datarobotRegisteredModelFromLeaderboardVersionId = example.versionId;
import pulumi
import pulumi_datarobot as datarobot
example = datarobot.RegisteredModelFromLeaderboard("example",
model_id="111111111111",
description="example description",
version_name="example version name",
prediction_threshold=0.5,
compute_all_ts_intervals=True,
distribution_prediction_model_id="222222222222",
use_case_ids=[datarobot_use_case["example"]["id"]])
pulumi.export("datarobotRegisteredModelFromLeaderboardId", example.id)
pulumi.export("datarobotRegisteredModelFromLeaderboardVersionId", example.version_id)
package main
import (
"github.com/datarobot-community/pulumi-datarobot/sdk/go/datarobot"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
example, err := datarobot.NewRegisteredModelFromLeaderboard(ctx, "example", &datarobot.RegisteredModelFromLeaderboardArgs{
ModelId: pulumi.String("111111111111"),
Description: pulumi.String("example description"),
VersionName: pulumi.String("example version name"),
PredictionThreshold: pulumi.Float64(0.5),
ComputeAllTsIntervals: pulumi.Bool(true),
DistributionPredictionModelId: pulumi.String("222222222222"),
UseCaseIds: pulumi.StringArray{
datarobot_use_case.Example.Id,
},
})
if err != nil {
return err
}
ctx.Export("datarobotRegisteredModelFromLeaderboardId", example.ID())
ctx.Export("datarobotRegisteredModelFromLeaderboardVersionId", example.VersionId)
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Datarobot = DataRobotPulumi.Datarobot;
return await Deployment.RunAsync(() =>
{
var example = new Datarobot.RegisteredModelFromLeaderboard("example", new()
{
ModelId = "111111111111",
Description = "example description",
VersionName = "example version name",
PredictionThreshold = 0.5,
ComputeAllTsIntervals = true,
DistributionPredictionModelId = "222222222222",
UseCaseIds = new[]
{
datarobot_use_case.Example.Id,
},
});
return new Dictionary<string, object?>
{
["datarobotRegisteredModelFromLeaderboardId"] = example.Id,
["datarobotRegisteredModelFromLeaderboardVersionId"] = example.VersionId,
};
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.datarobot.RegisteredModelFromLeaderboard;
import com.pulumi.datarobot.RegisteredModelFromLeaderboardArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var example = new RegisteredModelFromLeaderboard("example", RegisteredModelFromLeaderboardArgs.builder()
.modelId("111111111111")
.description("example description")
.versionName("example version name")
.predictionThreshold(0.5)
.computeAllTsIntervals(true)
.distributionPredictionModelId("222222222222")
.useCaseIds(datarobot_use_case.example().id())
.build());
ctx.export("datarobotRegisteredModelFromLeaderboardId", example.id());
ctx.export("datarobotRegisteredModelFromLeaderboardVersionId", example.versionId());
}
}
resources:
example:
type: datarobot:RegisteredModelFromLeaderboard
properties:
modelId: '111111111111'
# Optional
description: example description
versionName: example version name
predictionThreshold: 0.5
computeAllTsIntervals: true
distributionPredictionModelId: '222222222222'
useCaseIds:
- ${datarobot_use_case.example.id}
outputs:
datarobotRegisteredModelFromLeaderboardId: ${example.id}
datarobotRegisteredModelFromLeaderboardVersionId: ${example.versionId}
Create RegisteredModelFromLeaderboard Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new RegisteredModelFromLeaderboard(name: string, args: RegisteredModelFromLeaderboardArgs, opts?: CustomResourceOptions);
@overload
def RegisteredModelFromLeaderboard(resource_name: str,
args: RegisteredModelFromLeaderboardArgs,
opts: Optional[ResourceOptions] = None)
@overload
def RegisteredModelFromLeaderboard(resource_name: str,
opts: Optional[ResourceOptions] = None,
model_id: Optional[str] = None,
compute_all_ts_intervals: Optional[bool] = None,
description: Optional[str] = None,
distribution_prediction_model_id: Optional[str] = None,
name: Optional[str] = None,
prediction_threshold: Optional[float] = None,
use_case_ids: Optional[Sequence[str]] = None,
version_name: Optional[str] = None)
func NewRegisteredModelFromLeaderboard(ctx *Context, name string, args RegisteredModelFromLeaderboardArgs, opts ...ResourceOption) (*RegisteredModelFromLeaderboard, error)
public RegisteredModelFromLeaderboard(string name, RegisteredModelFromLeaderboardArgs args, CustomResourceOptions? opts = null)
public RegisteredModelFromLeaderboard(String name, RegisteredModelFromLeaderboardArgs args)
public RegisteredModelFromLeaderboard(String name, RegisteredModelFromLeaderboardArgs args, CustomResourceOptions options)
type: datarobot:RegisteredModelFromLeaderboard
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args RegisteredModelFromLeaderboardArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args RegisteredModelFromLeaderboardArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args RegisteredModelFromLeaderboardArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args RegisteredModelFromLeaderboardArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args RegisteredModelFromLeaderboardArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var registeredModelFromLeaderboardResource = new Datarobot.RegisteredModelFromLeaderboard("registeredModelFromLeaderboardResource", new()
{
ModelId = "string",
ComputeAllTsIntervals = false,
Description = "string",
DistributionPredictionModelId = "string",
Name = "string",
PredictionThreshold = 0,
UseCaseIds = new[]
{
"string",
},
VersionName = "string",
});
example, err := datarobot.NewRegisteredModelFromLeaderboard(ctx, "registeredModelFromLeaderboardResource", &datarobot.RegisteredModelFromLeaderboardArgs{
ModelId: pulumi.String("string"),
ComputeAllTsIntervals: pulumi.Bool(false),
Description: pulumi.String("string"),
DistributionPredictionModelId: pulumi.String("string"),
Name: pulumi.String("string"),
PredictionThreshold: pulumi.Float64(0),
UseCaseIds: pulumi.StringArray{
pulumi.String("string"),
},
VersionName: pulumi.String("string"),
})
var registeredModelFromLeaderboardResource = new RegisteredModelFromLeaderboard("registeredModelFromLeaderboardResource", RegisteredModelFromLeaderboardArgs.builder()
.modelId("string")
.computeAllTsIntervals(false)
.description("string")
.distributionPredictionModelId("string")
.name("string")
.predictionThreshold(0)
.useCaseIds("string")
.versionName("string")
.build());
registered_model_from_leaderboard_resource = datarobot.RegisteredModelFromLeaderboard("registeredModelFromLeaderboardResource",
model_id="string",
compute_all_ts_intervals=False,
description="string",
distribution_prediction_model_id="string",
name="string",
prediction_threshold=0,
use_case_ids=["string"],
version_name="string")
const registeredModelFromLeaderboardResource = new datarobot.RegisteredModelFromLeaderboard("registeredModelFromLeaderboardResource", {
modelId: "string",
computeAllTsIntervals: false,
description: "string",
distributionPredictionModelId: "string",
name: "string",
predictionThreshold: 0,
useCaseIds: ["string"],
versionName: "string",
});
type: datarobot:RegisteredModelFromLeaderboard
properties:
computeAllTsIntervals: false
description: string
distributionPredictionModelId: string
modelId: string
name: string
predictionThreshold: 0
useCaseIds:
- string
versionName: string
RegisteredModelFromLeaderboard Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The RegisteredModelFromLeaderboard resource accepts the following input properties:
- Model
Id string - The ID of the DataRobot model for this Registered Model.
- Compute
All boolTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- Description string
- The description of the Registered Model.
- Distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- Name string
- The name of the Registered Model.
- Prediction
Threshold double - The prediction threshold for the model.
- Use
Case List<string>Ids - The list of Use Case IDs to add the Registered Model version to.
- Version
Name string - The name of the Registered Model Version.
- Model
Id string - The ID of the DataRobot model for this Registered Model.
- Compute
All boolTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- Description string
- The description of the Registered Model.
- Distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- Name string
- The name of the Registered Model.
- Prediction
Threshold float64 - The prediction threshold for the model.
- Use
Case []stringIds - The list of Use Case IDs to add the Registered Model version to.
- Version
Name string - The name of the Registered Model Version.
- model
Id String - The ID of the DataRobot model for this Registered Model.
- compute
All BooleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description String
- The description of the Registered Model.
- distribution
Prediction StringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- name String
- The name of the Registered Model.
- prediction
Threshold Double - The prediction threshold for the model.
- use
Case List<String>Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Name String - The name of the Registered Model Version.
- model
Id string - The ID of the DataRobot model for this Registered Model.
- compute
All booleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description string
- The description of the Registered Model.
- distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- name string
- The name of the Registered Model.
- prediction
Threshold number - The prediction threshold for the model.
- use
Case string[]Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Name string - The name of the Registered Model Version.
- model_
id str - The ID of the DataRobot model for this Registered Model.
- compute_
all_ boolts_ intervals - Whether to compute all time series intervals (1-100 percentiles).
- description str
- The description of the Registered Model.
- distribution_
prediction_ strmodel_ id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- name str
- The name of the Registered Model.
- prediction_
threshold float - The prediction threshold for the model.
- use_
case_ Sequence[str]ids - The list of Use Case IDs to add the Registered Model version to.
- version_
name str - The name of the Registered Model Version.
- model
Id String - The ID of the DataRobot model for this Registered Model.
- compute
All BooleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description String
- The description of the Registered Model.
- distribution
Prediction StringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- name String
- The name of the Registered Model.
- prediction
Threshold Number - The prediction threshold for the model.
- use
Case List<String>Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Name String - The name of the Registered Model Version.
Outputs
All input properties are implicitly available as output properties. Additionally, the RegisteredModelFromLeaderboard resource produces the following output properties:
- id str
- The provider-assigned unique ID for this managed resource.
- version_
id str - The ID of the Registered Model Version.
Look up Existing RegisteredModelFromLeaderboard Resource
Get an existing RegisteredModelFromLeaderboard resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: RegisteredModelFromLeaderboardState, opts?: CustomResourceOptions): RegisteredModelFromLeaderboard
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
compute_all_ts_intervals: Optional[bool] = None,
description: Optional[str] = None,
distribution_prediction_model_id: Optional[str] = None,
model_id: Optional[str] = None,
name: Optional[str] = None,
prediction_threshold: Optional[float] = None,
use_case_ids: Optional[Sequence[str]] = None,
version_id: Optional[str] = None,
version_name: Optional[str] = None) -> RegisteredModelFromLeaderboard
func GetRegisteredModelFromLeaderboard(ctx *Context, name string, id IDInput, state *RegisteredModelFromLeaderboardState, opts ...ResourceOption) (*RegisteredModelFromLeaderboard, error)
public static RegisteredModelFromLeaderboard Get(string name, Input<string> id, RegisteredModelFromLeaderboardState? state, CustomResourceOptions? opts = null)
public static RegisteredModelFromLeaderboard get(String name, Output<String> id, RegisteredModelFromLeaderboardState state, CustomResourceOptions options)
resources: _: type: datarobot:RegisteredModelFromLeaderboard get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Compute
All boolTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- Description string
- The description of the Registered Model.
- Distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- Model
Id string - The ID of the DataRobot model for this Registered Model.
- Name string
- The name of the Registered Model.
- Prediction
Threshold double - The prediction threshold for the model.
- Use
Case List<string>Ids - The list of Use Case IDs to add the Registered Model version to.
- Version
Id string - The ID of the Registered Model Version.
- Version
Name string - The name of the Registered Model Version.
- Compute
All boolTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- Description string
- The description of the Registered Model.
- Distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- Model
Id string - The ID of the DataRobot model for this Registered Model.
- Name string
- The name of the Registered Model.
- Prediction
Threshold float64 - The prediction threshold for the model.
- Use
Case []stringIds - The list of Use Case IDs to add the Registered Model version to.
- Version
Id string - The ID of the Registered Model Version.
- Version
Name string - The name of the Registered Model Version.
- compute
All BooleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description String
- The description of the Registered Model.
- distribution
Prediction StringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- model
Id String - The ID of the DataRobot model for this Registered Model.
- name String
- The name of the Registered Model.
- prediction
Threshold Double - The prediction threshold for the model.
- use
Case List<String>Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Id String - The ID of the Registered Model Version.
- version
Name String - The name of the Registered Model Version.
- compute
All booleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description string
- The description of the Registered Model.
- distribution
Prediction stringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- model
Id string - The ID of the DataRobot model for this Registered Model.
- name string
- The name of the Registered Model.
- prediction
Threshold number - The prediction threshold for the model.
- use
Case string[]Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Id string - The ID of the Registered Model Version.
- version
Name string - The name of the Registered Model Version.
- compute_
all_ boolts_ intervals - Whether to compute all time series intervals (1-100 percentiles).
- description str
- The description of the Registered Model.
- distribution_
prediction_ strmodel_ id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- model_
id str - The ID of the DataRobot model for this Registered Model.
- name str
- The name of the Registered Model.
- prediction_
threshold float - The prediction threshold for the model.
- use_
case_ Sequence[str]ids - The list of Use Case IDs to add the Registered Model version to.
- version_
id str - The ID of the Registered Model Version.
- version_
name str - The name of the Registered Model Version.
- compute
All BooleanTs Intervals - Whether to compute all time series intervals (1-100 percentiles).
- description String
- The description of the Registered Model.
- distribution
Prediction StringModel Id - The ID of the DataRobot distribution prediction model trained on predictions from the DataRobot model.
- model
Id String - The ID of the DataRobot model for this Registered Model.
- name String
- The name of the Registered Model.
- prediction
Threshold Number - The prediction threshold for the model.
- use
Case List<String>Ids - The list of Use Case IDs to add the Registered Model version to.
- version
Id String - The ID of the Registered Model Version.
- version
Name String - The name of the Registered Model Version.
Package Details
- Repository
- datarobot datarobot-community/pulumi-datarobot
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
datarobot
Terraform Provider.
