gcore.InferenceDeployment
Explore with Pulumi AI
Represent inference deployment
Example Usage
Prerequisite
import * as pulumi from "@pulumi/pulumi";
import * as gcore from "@pulumi/gcore";
const project = gcore.getProject({
name: "Default",
});
const region = gcore.getRegion({
name: "Luxembourg-2",
});
import pulumi
import pulumi_gcore as gcore
project = gcore.get_project(name="Default")
region = gcore.get_region(name="Luxembourg-2")
package main
import (
"github.com/pulumi/pulumi-terraform-provider/sdks/go/gcore/gcore"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := gcore.GetProject(ctx, &gcore.GetProjectArgs{
Name: "Default",
}, nil)
if err != nil {
return err
}
_, err = gcore.GetRegion(ctx, &gcore.GetRegionArgs{
Name: "Luxembourg-2",
}, nil)
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcore = Pulumi.Gcore;
return await Deployment.RunAsync(() =>
{
var project = Gcore.GetProject.Invoke(new()
{
Name = "Default",
});
var region = Gcore.GetRegion.Invoke(new()
{
Name = "Luxembourg-2",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcore.GcoreFunctions;
import com.pulumi.gcore.inputs.GetProjectArgs;
import com.pulumi.gcore.inputs.GetRegionArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var project = GcoreFunctions.getProject(GetProjectArgs.builder()
.name("Default")
.build());
final var region = GcoreFunctions.getRegion(GetRegionArgs.builder()
.name("Luxembourg-2")
.build());
}
}
variables:
project:
fn::invoke:
function: gcore:getProject
arguments:
name: Default
region:
fn::invoke:
function: gcore:getRegion
arguments:
name: Luxembourg-2
Basic example
Creating inference deployment
import * as pulumi from "@pulumi/pulumi";
import * as gcore from "@pulumi/gcore";
const inf = new gcore.InferenceDeployment("inf", {
projectId: data.gcore_project.project.id,
image: "nginx:latest",
listeningPort: 80,
flavorName: "inference-4vcpu-16gib",
containers: [{
regionId: data.gcore_region.region.id,
scaleMin: 2,
scaleMax: 2,
triggersCpuThreshold: 80,
}],
livenessProbe: {
enabled: true,
failureThreshold: 3,
initialDelaySeconds: 10,
periodSeconds: 10,
timeoutSeconds: 1,
successThreshold: 1,
httpGetPort: 80,
httpGetHeaders: {
"User-Agent": "my user agent",
},
httpGetHost: "localhost",
httpGetPath: "/",
httpGetSchema: "HTTPS",
},
readinessProbe: {
enabled: false,
},
startupProbe: {
enabled: false,
},
});
import pulumi
import pulumi_gcore as gcore
inf = gcore.InferenceDeployment("inf",
project_id=data["gcore_project"]["project"]["id"],
image="nginx:latest",
listening_port=80,
flavor_name="inference-4vcpu-16gib",
containers=[{
"region_id": data["gcore_region"]["region"]["id"],
"scale_min": 2,
"scale_max": 2,
"triggers_cpu_threshold": 80,
}],
liveness_probe={
"enabled": True,
"failure_threshold": 3,
"initial_delay_seconds": 10,
"period_seconds": 10,
"timeout_seconds": 1,
"success_threshold": 1,
"http_get_port": 80,
"http_get_headers": {
"User-Agent": "my user agent",
},
"http_get_host": "localhost",
"http_get_path": "/",
"http_get_schema": "HTTPS",
},
readiness_probe={
"enabled": False,
},
startup_probe={
"enabled": False,
})
package main
import (
"github.com/pulumi/pulumi-terraform-provider/sdks/go/gcore/gcore"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := gcore.NewInferenceDeployment(ctx, "inf", &gcore.InferenceDeploymentArgs{
ProjectId: pulumi.Any(data.Gcore_project.Project.Id),
Image: pulumi.String("nginx:latest"),
ListeningPort: pulumi.Float64(80),
FlavorName: pulumi.String("inference-4vcpu-16gib"),
Containers: gcore.InferenceDeploymentContainerArray{
&gcore.InferenceDeploymentContainerArgs{
RegionId: pulumi.Any(data.Gcore_region.Region.Id),
ScaleMin: pulumi.Float64(2),
ScaleMax: pulumi.Float64(2),
TriggersCpuThreshold: pulumi.Float64(80),
},
},
LivenessProbe: &gcore.InferenceDeploymentLivenessProbeArgs{
Enabled: pulumi.Bool(true),
FailureThreshold: pulumi.Float64(3),
InitialDelaySeconds: pulumi.Float64(10),
PeriodSeconds: pulumi.Float64(10),
TimeoutSeconds: pulumi.Float64(1),
SuccessThreshold: pulumi.Float64(1),
HttpGetPort: pulumi.Float64(80),
HttpGetHeaders: pulumi.StringMap{
"User-Agent": pulumi.String("my user agent"),
},
HttpGetHost: pulumi.String("localhost"),
HttpGetPath: pulumi.String("/"),
HttpGetSchema: pulumi.String("HTTPS"),
},
ReadinessProbe: &gcore.InferenceDeploymentReadinessProbeArgs{
Enabled: pulumi.Bool(false),
},
StartupProbe: &gcore.InferenceDeploymentStartupProbeArgs{
Enabled: pulumi.Bool(false),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcore = Pulumi.Gcore;
return await Deployment.RunAsync(() =>
{
var inf = new Gcore.InferenceDeployment("inf", new()
{
ProjectId = data.Gcore_project.Project.Id,
Image = "nginx:latest",
ListeningPort = 80,
FlavorName = "inference-4vcpu-16gib",
Containers = new[]
{
new Gcore.Inputs.InferenceDeploymentContainerArgs
{
RegionId = data.Gcore_region.Region.Id,
ScaleMin = 2,
ScaleMax = 2,
TriggersCpuThreshold = 80,
},
},
LivenessProbe = new Gcore.Inputs.InferenceDeploymentLivenessProbeArgs
{
Enabled = true,
FailureThreshold = 3,
InitialDelaySeconds = 10,
PeriodSeconds = 10,
TimeoutSeconds = 1,
SuccessThreshold = 1,
HttpGetPort = 80,
HttpGetHeaders =
{
{ "User-Agent", "my user agent" },
},
HttpGetHost = "localhost",
HttpGetPath = "/",
HttpGetSchema = "HTTPS",
},
ReadinessProbe = new Gcore.Inputs.InferenceDeploymentReadinessProbeArgs
{
Enabled = false,
},
StartupProbe = new Gcore.Inputs.InferenceDeploymentStartupProbeArgs
{
Enabled = false,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcore.InferenceDeployment;
import com.pulumi.gcore.InferenceDeploymentArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentContainerArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentLivenessProbeArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentReadinessProbeArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentStartupProbeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var inf = new InferenceDeployment("inf", InferenceDeploymentArgs.builder()
.projectId(data.gcore_project().project().id())
.image("nginx:latest")
.listeningPort(80)
.flavorName("inference-4vcpu-16gib")
.containers(InferenceDeploymentContainerArgs.builder()
.regionId(data.gcore_region().region().id())
.scaleMin(2)
.scaleMax(2)
.triggersCpuThreshold(80)
.build())
.livenessProbe(InferenceDeploymentLivenessProbeArgs.builder()
.enabled(true)
.failureThreshold(3)
.initialDelaySeconds(10)
.periodSeconds(10)
.timeoutSeconds(1)
.successThreshold(1)
.httpGetPort(80)
.httpGetHeaders(Map.of("User-Agent", "my user agent"))
.httpGetHost("localhost")
.httpGetPath("/")
.httpGetSchema("HTTPS")
.build())
.readinessProbe(InferenceDeploymentReadinessProbeArgs.builder()
.enabled(false)
.build())
.startupProbe(InferenceDeploymentStartupProbeArgs.builder()
.enabled(false)
.build())
.build());
}
}
resources:
'inf':
type: gcore:InferenceDeployment
properties:
projectId: ${data.gcore_project.project.id}
image: nginx:latest
listeningPort: 80
flavorName: inference-4vcpu-16gib
containers:
- regionId: ${data.gcore_region.region.id}
scaleMin: 2
scaleMax: 2
triggersCpuThreshold: 80
livenessProbe:
enabled: true
failureThreshold: 3
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 1
successThreshold: 1
httpGetPort: 80
httpGetHeaders:
User-Agent: my user agent
httpGetHost: localhost
httpGetPath: /
httpGetSchema: HTTPS
readinessProbe:
enabled: false
startupProbe:
enabled: false
Creating inference deployment with sqs trigger
import * as pulumi from "@pulumi/pulumi";
import * as gcore from "@pulumi/gcore";
const aws = new gcore.InferenceSecret("aws", {
projectId: data.gcore_project.project.id,
dataAwsAccessKeyId: "my-aws-access-key-id",
dataAwsSecretAccessKey: "my-aws-access-key",
});
const inf = new gcore.InferenceDeployment("inf", {
projectId: data.gcore_project.project.id,
image: "nginx:latest",
listeningPort: 80,
flavorName: "inference-4vcpu-16gib",
timeout: 60,
containers: [{
regionId: data.gcore_region.region.id,
cooldownPeriod: 60,
pollingInterval: 60,
scaleMin: 0,
scaleMax: 2,
triggersCpuThreshold: 80,
triggersSqsSecretName: aws.name,
triggersSqsAwsRegion: "us-west-2",
triggersSqsQueueUrl: "https://sqs.us-west-2.amazonaws.com/1234567890/my-queue",
triggersSqsQueueLength: 5,
triggersSqsActivationQueueLength: 2,
}],
livenessProbe: {
enabled: false,
},
readinessProbe: {
enabled: false,
},
startupProbe: {
enabled: false,
},
});
import pulumi
import pulumi_gcore as gcore
aws = gcore.InferenceSecret("aws",
project_id=data["gcore_project"]["project"]["id"],
data_aws_access_key_id="my-aws-access-key-id",
data_aws_secret_access_key="my-aws-access-key")
inf = gcore.InferenceDeployment("inf",
project_id=data["gcore_project"]["project"]["id"],
image="nginx:latest",
listening_port=80,
flavor_name="inference-4vcpu-16gib",
timeout=60,
containers=[{
"region_id": data["gcore_region"]["region"]["id"],
"cooldown_period": 60,
"polling_interval": 60,
"scale_min": 0,
"scale_max": 2,
"triggers_cpu_threshold": 80,
"triggers_sqs_secret_name": aws.name,
"triggers_sqs_aws_region": "us-west-2",
"triggers_sqs_queue_url": "https://sqs.us-west-2.amazonaws.com/1234567890/my-queue",
"triggers_sqs_queue_length": 5,
"triggers_sqs_activation_queue_length": 2,
}],
liveness_probe={
"enabled": False,
},
readiness_probe={
"enabled": False,
},
startup_probe={
"enabled": False,
})
package main
import (
"github.com/pulumi/pulumi-terraform-provider/sdks/go/gcore/gcore"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
aws, err := gcore.NewInferenceSecret(ctx, "aws", &gcore.InferenceSecretArgs{
ProjectId: pulumi.Any(data.Gcore_project.Project.Id),
DataAwsAccessKeyId: pulumi.String("my-aws-access-key-id"),
DataAwsSecretAccessKey: pulumi.String("my-aws-access-key"),
})
if err != nil {
return err
}
_, err = gcore.NewInferenceDeployment(ctx, "inf", &gcore.InferenceDeploymentArgs{
ProjectId: pulumi.Any(data.Gcore_project.Project.Id),
Image: pulumi.String("nginx:latest"),
ListeningPort: pulumi.Float64(80),
FlavorName: pulumi.String("inference-4vcpu-16gib"),
Timeout: pulumi.Float64(60),
Containers: gcore.InferenceDeploymentContainerArray{
&gcore.InferenceDeploymentContainerArgs{
RegionId: pulumi.Any(data.Gcore_region.Region.Id),
CooldownPeriod: pulumi.Float64(60),
PollingInterval: pulumi.Float64(60),
ScaleMin: pulumi.Float64(0),
ScaleMax: pulumi.Float64(2),
TriggersCpuThreshold: pulumi.Float64(80),
TriggersSqsSecretName: aws.Name,
TriggersSqsAwsRegion: pulumi.String("us-west-2"),
TriggersSqsQueueUrl: pulumi.String("https://sqs.us-west-2.amazonaws.com/1234567890/my-queue"),
TriggersSqsQueueLength: pulumi.Float64(5),
TriggersSqsActivationQueueLength: pulumi.Float64(2),
},
},
LivenessProbe: &gcore.InferenceDeploymentLivenessProbeArgs{
Enabled: pulumi.Bool(false),
},
ReadinessProbe: &gcore.InferenceDeploymentReadinessProbeArgs{
Enabled: pulumi.Bool(false),
},
StartupProbe: &gcore.InferenceDeploymentStartupProbeArgs{
Enabled: pulumi.Bool(false),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcore = Pulumi.Gcore;
return await Deployment.RunAsync(() =>
{
var aws = new Gcore.InferenceSecret("aws", new()
{
ProjectId = data.Gcore_project.Project.Id,
DataAwsAccessKeyId = "my-aws-access-key-id",
DataAwsSecretAccessKey = "my-aws-access-key",
});
var inf = new Gcore.InferenceDeployment("inf", new()
{
ProjectId = data.Gcore_project.Project.Id,
Image = "nginx:latest",
ListeningPort = 80,
FlavorName = "inference-4vcpu-16gib",
Timeout = 60,
Containers = new[]
{
new Gcore.Inputs.InferenceDeploymentContainerArgs
{
RegionId = data.Gcore_region.Region.Id,
CooldownPeriod = 60,
PollingInterval = 60,
ScaleMin = 0,
ScaleMax = 2,
TriggersCpuThreshold = 80,
TriggersSqsSecretName = aws.Name,
TriggersSqsAwsRegion = "us-west-2",
TriggersSqsQueueUrl = "https://sqs.us-west-2.amazonaws.com/1234567890/my-queue",
TriggersSqsQueueLength = 5,
TriggersSqsActivationQueueLength = 2,
},
},
LivenessProbe = new Gcore.Inputs.InferenceDeploymentLivenessProbeArgs
{
Enabled = false,
},
ReadinessProbe = new Gcore.Inputs.InferenceDeploymentReadinessProbeArgs
{
Enabled = false,
},
StartupProbe = new Gcore.Inputs.InferenceDeploymentStartupProbeArgs
{
Enabled = false,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcore.InferenceSecret;
import com.pulumi.gcore.InferenceSecretArgs;
import com.pulumi.gcore.InferenceDeployment;
import com.pulumi.gcore.InferenceDeploymentArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentContainerArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentLivenessProbeArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentReadinessProbeArgs;
import com.pulumi.gcore.inputs.InferenceDeploymentStartupProbeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var aws = new InferenceSecret("aws", InferenceSecretArgs.builder()
.projectId(data.gcore_project().project().id())
.dataAwsAccessKeyId("my-aws-access-key-id")
.dataAwsSecretAccessKey("my-aws-access-key")
.build());
var inf = new InferenceDeployment("inf", InferenceDeploymentArgs.builder()
.projectId(data.gcore_project().project().id())
.image("nginx:latest")
.listeningPort(80)
.flavorName("inference-4vcpu-16gib")
.timeout(60)
.containers(InferenceDeploymentContainerArgs.builder()
.regionId(data.gcore_region().region().id())
.cooldownPeriod(60)
.pollingInterval(60)
.scaleMin(0)
.scaleMax(2)
.triggersCpuThreshold(80)
.triggersSqsSecretName(aws.name())
.triggersSqsAwsRegion("us-west-2")
.triggersSqsQueueUrl("https://sqs.us-west-2.amazonaws.com/1234567890/my-queue")
.triggersSqsQueueLength(5)
.triggersSqsActivationQueueLength(2)
.build())
.livenessProbe(InferenceDeploymentLivenessProbeArgs.builder()
.enabled(false)
.build())
.readinessProbe(InferenceDeploymentReadinessProbeArgs.builder()
.enabled(false)
.build())
.startupProbe(InferenceDeploymentStartupProbeArgs.builder()
.enabled(false)
.build())
.build());
}
}
resources:
aws:
type: gcore:InferenceSecret
properties:
projectId: ${data.gcore_project.project.id}
dataAwsAccessKeyId: my-aws-access-key-id
dataAwsSecretAccessKey: my-aws-access-key
'inf':
type: gcore:InferenceDeployment
properties:
projectId: ${data.gcore_project.project.id}
image: nginx:latest
listeningPort: 80
flavorName: inference-4vcpu-16gib
timeout: 60
containers:
- regionId: ${data.gcore_region.region.id}
cooldownPeriod: 60
pollingInterval: 60
scaleMin: 0
scaleMax: 2
triggersCpuThreshold: 80
triggersSqsSecretName: ${aws.name}
triggersSqsAwsRegion: us-west-2
triggersSqsQueueUrl: https://sqs.us-west-2.amazonaws.com/1234567890/my-queue
triggersSqsQueueLength: 5
triggersSqsActivationQueueLength: 2
livenessProbe:
enabled: false
readinessProbe:
enabled: false
startupProbe:
enabled: false
Create InferenceDeployment Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new InferenceDeployment(name: string, args: InferenceDeploymentArgs, opts?: CustomResourceOptions);
@overload
def InferenceDeployment(resource_name: str,
args: InferenceDeploymentArgs,
opts: Optional[ResourceOptions] = None)
@overload
def InferenceDeployment(resource_name: str,
opts: Optional[ResourceOptions] = None,
flavor_name: Optional[str] = None,
listening_port: Optional[float] = None,
containers: Optional[Sequence[InferenceDeploymentContainerArgs]] = None,
image: Optional[str] = None,
inference_deployment_id: Optional[str] = None,
logging: Optional[InferenceDeploymentLoggingArgs] = None,
description: Optional[str] = None,
credentials_name: Optional[str] = None,
auth_enabled: Optional[bool] = None,
command: Optional[str] = None,
liveness_probe: Optional[InferenceDeploymentLivenessProbeArgs] = None,
envs: Optional[Mapping[str, str]] = None,
name: Optional[str] = None,
project_id: Optional[float] = None,
project_name: Optional[str] = None,
readiness_probe: Optional[InferenceDeploymentReadinessProbeArgs] = None,
startup_probe: Optional[InferenceDeploymentStartupProbeArgs] = None,
timeout: Optional[float] = None)
func NewInferenceDeployment(ctx *Context, name string, args InferenceDeploymentArgs, opts ...ResourceOption) (*InferenceDeployment, error)
public InferenceDeployment(string name, InferenceDeploymentArgs args, CustomResourceOptions? opts = null)
public InferenceDeployment(String name, InferenceDeploymentArgs args)
public InferenceDeployment(String name, InferenceDeploymentArgs args, CustomResourceOptions options)
type: gcore:InferenceDeployment
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args InferenceDeploymentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args InferenceDeploymentArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args InferenceDeploymentArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args InferenceDeploymentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args InferenceDeploymentArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var inferenceDeploymentResource = new Gcore.InferenceDeployment("inferenceDeploymentResource", new()
{
FlavorName = "string",
ListeningPort = 0,
Containers = new[]
{
new Gcore.Inputs.InferenceDeploymentContainerArgs
{
ScaleMax = 0,
CooldownPeriod = 0,
ScaleMin = 0,
RegionId = 0,
TriggersHttpRate = 0,
TriggersSqsActivationQueueLength = 0,
TotalContainers = 0,
TriggersCpuThreshold = 0,
TriggersGpuMemoryThreshold = 0,
TriggersGpuUtilizationThreshold = 0,
PollingInterval = 0,
TriggersHttpWindow = 0,
TriggersMemoryThreshold = 0,
ReadyContainers = 0,
TriggersSqsAwsEndpoint = "string",
TriggersSqsAwsRegion = "string",
TriggersSqsQueueLength = 0,
TriggersSqsQueueUrl = "string",
TriggersSqsScaleOnDelayed = false,
TriggersSqsScaleOnFlight = false,
TriggersSqsSecretName = "string",
},
},
Image = "string",
InferenceDeploymentId = "string",
Logging = new Gcore.Inputs.InferenceDeploymentLoggingArgs
{
DestinationRegionId = 0,
Enabled = false,
RetentionPolicyPeriod = 0,
TopicName = "string",
},
Description = "string",
CredentialsName = "string",
AuthEnabled = false,
Command = "string",
LivenessProbe = new Gcore.Inputs.InferenceDeploymentLivenessProbeArgs
{
Enabled = false,
ExecCommand = "string",
FailureThreshold = 0,
HttpGetHeaders =
{
{ "string", "string" },
},
HttpGetHost = "string",
HttpGetPath = "string",
HttpGetPort = 0,
HttpGetSchema = "string",
InitialDelaySeconds = 0,
PeriodSeconds = 0,
SuccessThreshold = 0,
TcpSocketPort = 0,
TimeoutSeconds = 0,
},
Envs =
{
{ "string", "string" },
},
Name = "string",
ProjectId = 0,
ProjectName = "string",
ReadinessProbe = new Gcore.Inputs.InferenceDeploymentReadinessProbeArgs
{
Enabled = false,
ExecCommand = "string",
FailureThreshold = 0,
HttpGetHeaders =
{
{ "string", "string" },
},
HttpGetHost = "string",
HttpGetPath = "string",
HttpGetPort = 0,
HttpGetSchema = "string",
InitialDelaySeconds = 0,
PeriodSeconds = 0,
SuccessThreshold = 0,
TcpSocketPort = 0,
TimeoutSeconds = 0,
},
StartupProbe = new Gcore.Inputs.InferenceDeploymentStartupProbeArgs
{
Enabled = false,
ExecCommand = "string",
FailureThreshold = 0,
HttpGetHeaders =
{
{ "string", "string" },
},
HttpGetHost = "string",
HttpGetPath = "string",
HttpGetPort = 0,
HttpGetSchema = "string",
InitialDelaySeconds = 0,
PeriodSeconds = 0,
SuccessThreshold = 0,
TcpSocketPort = 0,
TimeoutSeconds = 0,
},
Timeout = 0,
});
example, err := gcore.NewInferenceDeployment(ctx, "inferenceDeploymentResource", &gcore.InferenceDeploymentArgs{
FlavorName: pulumi.String("string"),
ListeningPort: pulumi.Float64(0),
Containers: gcore.InferenceDeploymentContainerArray{
&gcore.InferenceDeploymentContainerArgs{
ScaleMax: pulumi.Float64(0),
CooldownPeriod: pulumi.Float64(0),
ScaleMin: pulumi.Float64(0),
RegionId: pulumi.Float64(0),
TriggersHttpRate: pulumi.Float64(0),
TriggersSqsActivationQueueLength: pulumi.Float64(0),
TotalContainers: pulumi.Float64(0),
TriggersCpuThreshold: pulumi.Float64(0),
TriggersGpuMemoryThreshold: pulumi.Float64(0),
TriggersGpuUtilizationThreshold: pulumi.Float64(0),
PollingInterval: pulumi.Float64(0),
TriggersHttpWindow: pulumi.Float64(0),
TriggersMemoryThreshold: pulumi.Float64(0),
ReadyContainers: pulumi.Float64(0),
TriggersSqsAwsEndpoint: pulumi.String("string"),
TriggersSqsAwsRegion: pulumi.String("string"),
TriggersSqsQueueLength: pulumi.Float64(0),
TriggersSqsQueueUrl: pulumi.String("string"),
TriggersSqsScaleOnDelayed: pulumi.Bool(false),
TriggersSqsScaleOnFlight: pulumi.Bool(false),
TriggersSqsSecretName: pulumi.String("string"),
},
},
Image: pulumi.String("string"),
InferenceDeploymentId: pulumi.String("string"),
Logging: &gcore.InferenceDeploymentLoggingArgs{
DestinationRegionId: pulumi.Float64(0),
Enabled: pulumi.Bool(false),
RetentionPolicyPeriod: pulumi.Float64(0),
TopicName: pulumi.String("string"),
},
Description: pulumi.String("string"),
CredentialsName: pulumi.String("string"),
AuthEnabled: pulumi.Bool(false),
Command: pulumi.String("string"),
LivenessProbe: &gcore.InferenceDeploymentLivenessProbeArgs{
Enabled: pulumi.Bool(false),
ExecCommand: pulumi.String("string"),
FailureThreshold: pulumi.Float64(0),
HttpGetHeaders: pulumi.StringMap{
"string": pulumi.String("string"),
},
HttpGetHost: pulumi.String("string"),
HttpGetPath: pulumi.String("string"),
HttpGetPort: pulumi.Float64(0),
HttpGetSchema: pulumi.String("string"),
InitialDelaySeconds: pulumi.Float64(0),
PeriodSeconds: pulumi.Float64(0),
SuccessThreshold: pulumi.Float64(0),
TcpSocketPort: pulumi.Float64(0),
TimeoutSeconds: pulumi.Float64(0),
},
Envs: pulumi.StringMap{
"string": pulumi.String("string"),
},
Name: pulumi.String("string"),
ProjectId: pulumi.Float64(0),
ProjectName: pulumi.String("string"),
ReadinessProbe: &gcore.InferenceDeploymentReadinessProbeArgs{
Enabled: pulumi.Bool(false),
ExecCommand: pulumi.String("string"),
FailureThreshold: pulumi.Float64(0),
HttpGetHeaders: pulumi.StringMap{
"string": pulumi.String("string"),
},
HttpGetHost: pulumi.String("string"),
HttpGetPath: pulumi.String("string"),
HttpGetPort: pulumi.Float64(0),
HttpGetSchema: pulumi.String("string"),
InitialDelaySeconds: pulumi.Float64(0),
PeriodSeconds: pulumi.Float64(0),
SuccessThreshold: pulumi.Float64(0),
TcpSocketPort: pulumi.Float64(0),
TimeoutSeconds: pulumi.Float64(0),
},
StartupProbe: &gcore.InferenceDeploymentStartupProbeArgs{
Enabled: pulumi.Bool(false),
ExecCommand: pulumi.String("string"),
FailureThreshold: pulumi.Float64(0),
HttpGetHeaders: pulumi.StringMap{
"string": pulumi.String("string"),
},
HttpGetHost: pulumi.String("string"),
HttpGetPath: pulumi.String("string"),
HttpGetPort: pulumi.Float64(0),
HttpGetSchema: pulumi.String("string"),
InitialDelaySeconds: pulumi.Float64(0),
PeriodSeconds: pulumi.Float64(0),
SuccessThreshold: pulumi.Float64(0),
TcpSocketPort: pulumi.Float64(0),
TimeoutSeconds: pulumi.Float64(0),
},
Timeout: pulumi.Float64(0),
})
var inferenceDeploymentResource = new InferenceDeployment("inferenceDeploymentResource", InferenceDeploymentArgs.builder()
.flavorName("string")
.listeningPort(0)
.containers(InferenceDeploymentContainerArgs.builder()
.scaleMax(0)
.cooldownPeriod(0)
.scaleMin(0)
.regionId(0)
.triggersHttpRate(0)
.triggersSqsActivationQueueLength(0)
.totalContainers(0)
.triggersCpuThreshold(0)
.triggersGpuMemoryThreshold(0)
.triggersGpuUtilizationThreshold(0)
.pollingInterval(0)
.triggersHttpWindow(0)
.triggersMemoryThreshold(0)
.readyContainers(0)
.triggersSqsAwsEndpoint("string")
.triggersSqsAwsRegion("string")
.triggersSqsQueueLength(0)
.triggersSqsQueueUrl("string")
.triggersSqsScaleOnDelayed(false)
.triggersSqsScaleOnFlight(false)
.triggersSqsSecretName("string")
.build())
.image("string")
.inferenceDeploymentId("string")
.logging(InferenceDeploymentLoggingArgs.builder()
.destinationRegionId(0)
.enabled(false)
.retentionPolicyPeriod(0)
.topicName("string")
.build())
.description("string")
.credentialsName("string")
.authEnabled(false)
.command("string")
.livenessProbe(InferenceDeploymentLivenessProbeArgs.builder()
.enabled(false)
.execCommand("string")
.failureThreshold(0)
.httpGetHeaders(Map.of("string", "string"))
.httpGetHost("string")
.httpGetPath("string")
.httpGetPort(0)
.httpGetSchema("string")
.initialDelaySeconds(0)
.periodSeconds(0)
.successThreshold(0)
.tcpSocketPort(0)
.timeoutSeconds(0)
.build())
.envs(Map.of("string", "string"))
.name("string")
.projectId(0)
.projectName("string")
.readinessProbe(InferenceDeploymentReadinessProbeArgs.builder()
.enabled(false)
.execCommand("string")
.failureThreshold(0)
.httpGetHeaders(Map.of("string", "string"))
.httpGetHost("string")
.httpGetPath("string")
.httpGetPort(0)
.httpGetSchema("string")
.initialDelaySeconds(0)
.periodSeconds(0)
.successThreshold(0)
.tcpSocketPort(0)
.timeoutSeconds(0)
.build())
.startupProbe(InferenceDeploymentStartupProbeArgs.builder()
.enabled(false)
.execCommand("string")
.failureThreshold(0)
.httpGetHeaders(Map.of("string", "string"))
.httpGetHost("string")
.httpGetPath("string")
.httpGetPort(0)
.httpGetSchema("string")
.initialDelaySeconds(0)
.periodSeconds(0)
.successThreshold(0)
.tcpSocketPort(0)
.timeoutSeconds(0)
.build())
.timeout(0)
.build());
inference_deployment_resource = gcore.InferenceDeployment("inferenceDeploymentResource",
flavor_name="string",
listening_port=0,
containers=[{
"scale_max": 0,
"cooldown_period": 0,
"scale_min": 0,
"region_id": 0,
"triggers_http_rate": 0,
"triggers_sqs_activation_queue_length": 0,
"total_containers": 0,
"triggers_cpu_threshold": 0,
"triggers_gpu_memory_threshold": 0,
"triggers_gpu_utilization_threshold": 0,
"polling_interval": 0,
"triggers_http_window": 0,
"triggers_memory_threshold": 0,
"ready_containers": 0,
"triggers_sqs_aws_endpoint": "string",
"triggers_sqs_aws_region": "string",
"triggers_sqs_queue_length": 0,
"triggers_sqs_queue_url": "string",
"triggers_sqs_scale_on_delayed": False,
"triggers_sqs_scale_on_flight": False,
"triggers_sqs_secret_name": "string",
}],
image="string",
inference_deployment_id="string",
logging={
"destination_region_id": 0,
"enabled": False,
"retention_policy_period": 0,
"topic_name": "string",
},
description="string",
credentials_name="string",
auth_enabled=False,
command="string",
liveness_probe={
"enabled": False,
"exec_command": "string",
"failure_threshold": 0,
"http_get_headers": {
"string": "string",
},
"http_get_host": "string",
"http_get_path": "string",
"http_get_port": 0,
"http_get_schema": "string",
"initial_delay_seconds": 0,
"period_seconds": 0,
"success_threshold": 0,
"tcp_socket_port": 0,
"timeout_seconds": 0,
},
envs={
"string": "string",
},
name="string",
project_id=0,
project_name="string",
readiness_probe={
"enabled": False,
"exec_command": "string",
"failure_threshold": 0,
"http_get_headers": {
"string": "string",
},
"http_get_host": "string",
"http_get_path": "string",
"http_get_port": 0,
"http_get_schema": "string",
"initial_delay_seconds": 0,
"period_seconds": 0,
"success_threshold": 0,
"tcp_socket_port": 0,
"timeout_seconds": 0,
},
startup_probe={
"enabled": False,
"exec_command": "string",
"failure_threshold": 0,
"http_get_headers": {
"string": "string",
},
"http_get_host": "string",
"http_get_path": "string",
"http_get_port": 0,
"http_get_schema": "string",
"initial_delay_seconds": 0,
"period_seconds": 0,
"success_threshold": 0,
"tcp_socket_port": 0,
"timeout_seconds": 0,
},
timeout=0)
const inferenceDeploymentResource = new gcore.InferenceDeployment("inferenceDeploymentResource", {
flavorName: "string",
listeningPort: 0,
containers: [{
scaleMax: 0,
cooldownPeriod: 0,
scaleMin: 0,
regionId: 0,
triggersHttpRate: 0,
triggersSqsActivationQueueLength: 0,
totalContainers: 0,
triggersCpuThreshold: 0,
triggersGpuMemoryThreshold: 0,
triggersGpuUtilizationThreshold: 0,
pollingInterval: 0,
triggersHttpWindow: 0,
triggersMemoryThreshold: 0,
readyContainers: 0,
triggersSqsAwsEndpoint: "string",
triggersSqsAwsRegion: "string",
triggersSqsQueueLength: 0,
triggersSqsQueueUrl: "string",
triggersSqsScaleOnDelayed: false,
triggersSqsScaleOnFlight: false,
triggersSqsSecretName: "string",
}],
image: "string",
inferenceDeploymentId: "string",
logging: {
destinationRegionId: 0,
enabled: false,
retentionPolicyPeriod: 0,
topicName: "string",
},
description: "string",
credentialsName: "string",
authEnabled: false,
command: "string",
livenessProbe: {
enabled: false,
execCommand: "string",
failureThreshold: 0,
httpGetHeaders: {
string: "string",
},
httpGetHost: "string",
httpGetPath: "string",
httpGetPort: 0,
httpGetSchema: "string",
initialDelaySeconds: 0,
periodSeconds: 0,
successThreshold: 0,
tcpSocketPort: 0,
timeoutSeconds: 0,
},
envs: {
string: "string",
},
name: "string",
projectId: 0,
projectName: "string",
readinessProbe: {
enabled: false,
execCommand: "string",
failureThreshold: 0,
httpGetHeaders: {
string: "string",
},
httpGetHost: "string",
httpGetPath: "string",
httpGetPort: 0,
httpGetSchema: "string",
initialDelaySeconds: 0,
periodSeconds: 0,
successThreshold: 0,
tcpSocketPort: 0,
timeoutSeconds: 0,
},
startupProbe: {
enabled: false,
execCommand: "string",
failureThreshold: 0,
httpGetHeaders: {
string: "string",
},
httpGetHost: "string",
httpGetPath: "string",
httpGetPort: 0,
httpGetSchema: "string",
initialDelaySeconds: 0,
periodSeconds: 0,
successThreshold: 0,
tcpSocketPort: 0,
timeoutSeconds: 0,
},
timeout: 0,
});
type: gcore:InferenceDeployment
properties:
authEnabled: false
command: string
containers:
- cooldownPeriod: 0
pollingInterval: 0
readyContainers: 0
regionId: 0
scaleMax: 0
scaleMin: 0
totalContainers: 0
triggersCpuThreshold: 0
triggersGpuMemoryThreshold: 0
triggersGpuUtilizationThreshold: 0
triggersHttpRate: 0
triggersHttpWindow: 0
triggersMemoryThreshold: 0
triggersSqsActivationQueueLength: 0
triggersSqsAwsEndpoint: string
triggersSqsAwsRegion: string
triggersSqsQueueLength: 0
triggersSqsQueueUrl: string
triggersSqsScaleOnDelayed: false
triggersSqsScaleOnFlight: false
triggersSqsSecretName: string
credentialsName: string
description: string
envs:
string: string
flavorName: string
image: string
inferenceDeploymentId: string
listeningPort: 0
livenessProbe:
enabled: false
execCommand: string
failureThreshold: 0
httpGetHeaders:
string: string
httpGetHost: string
httpGetPath: string
httpGetPort: 0
httpGetSchema: string
initialDelaySeconds: 0
periodSeconds: 0
successThreshold: 0
tcpSocketPort: 0
timeoutSeconds: 0
logging:
destinationRegionId: 0
enabled: false
retentionPolicyPeriod: 0
topicName: string
name: string
projectId: 0
projectName: string
readinessProbe:
enabled: false
execCommand: string
failureThreshold: 0
httpGetHeaders:
string: string
httpGetHost: string
httpGetPath: string
httpGetPort: 0
httpGetSchema: string
initialDelaySeconds: 0
periodSeconds: 0
successThreshold: 0
tcpSocketPort: 0
timeoutSeconds: 0
startupProbe:
enabled: false
execCommand: string
failureThreshold: 0
httpGetHeaders:
string: string
httpGetHost: string
httpGetPath: string
httpGetPort: 0
httpGetSchema: string
initialDelaySeconds: 0
periodSeconds: 0
successThreshold: 0
tcpSocketPort: 0
timeoutSeconds: 0
timeout: 0
InferenceDeployment Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The InferenceDeployment resource accepts the following input properties:
- Containers
List<Inference
Deployment Container> - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- Flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- Image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- Listening
Port double - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- Auth
Enabled bool - Set to true to enable API key authentication for the inference instance.
- Command string
- Command to be executed when running a container from an image.
- Credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- Description string
- Envs Dictionary<string, string>
- Environment variables for the inference instance.
- Inference
Deployment stringId - The ID of this resource.
- Liveness
Probe InferenceDeployment Liveness Probe - Logging
Inference
Deployment Logging - Name string
- The name of the deployment. This should be unique within the scope of the project.
- Project
Id double - Project
Name string - Readiness
Probe InferenceDeployment Readiness Probe - Startup
Probe InferenceDeployment Startup Probe - Timeout double
- Containers
[]Inference
Deployment Container Args - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- Flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- Image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- Listening
Port float64 - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- Auth
Enabled bool - Set to true to enable API key authentication for the inference instance.
- Command string
- Command to be executed when running a container from an image.
- Credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- Description string
- Envs map[string]string
- Environment variables for the inference instance.
- Inference
Deployment stringId - The ID of this resource.
- Liveness
Probe InferenceDeployment Liveness Probe Args - Logging
Inference
Deployment Logging Args - Name string
- The name of the deployment. This should be unique within the scope of the project.
- Project
Id float64 - Project
Name string - Readiness
Probe InferenceDeployment Readiness Probe Args - Startup
Probe InferenceDeployment Startup Probe Args - Timeout float64
- containers
List<Inference
Deployment Container> - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- flavor
Name String - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image String
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- listening
Port Double - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- auth
Enabled Boolean - Set to true to enable API key authentication for the inference instance.
- command String
- Command to be executed when running a container from an image.
- credentials
Name String - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description String
- envs Map<String,String>
- Environment variables for the inference instance.
- inference
Deployment StringId - The ID of this resource.
- liveness
Probe InferenceDeployment Liveness Probe - logging
Inference
Deployment Logging - name String
- The name of the deployment. This should be unique within the scope of the project.
- project
Id Double - project
Name String - readiness
Probe InferenceDeployment Readiness Probe - startup
Probe InferenceDeployment Startup Probe - timeout Double
- containers
Inference
Deployment Container[] - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- listening
Port number - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- auth
Enabled boolean - Set to true to enable API key authentication for the inference instance.
- command string
- Command to be executed when running a container from an image.
- credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description string
- envs {[key: string]: string}
- Environment variables for the inference instance.
- inference
Deployment stringId - The ID of this resource.
- liveness
Probe InferenceDeployment Liveness Probe - logging
Inference
Deployment Logging - name string
- The name of the deployment. This should be unique within the scope of the project.
- project
Id number - project
Name string - readiness
Probe InferenceDeployment Readiness Probe - startup
Probe InferenceDeployment Startup Probe - timeout number
- containers
Sequence[Inference
Deployment Container Args] - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- flavor_
name str - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image str
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- listening_
port float - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- auth_
enabled bool - Set to true to enable API key authentication for the inference instance.
- command str
- Command to be executed when running a container from an image.
- credentials_
name str - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description str
- envs Mapping[str, str]
- Environment variables for the inference instance.
- inference_
deployment_ strid - The ID of this resource.
- liveness_
probe InferenceDeployment Liveness Probe Args - logging
Inference
Deployment Logging Args - name str
- The name of the deployment. This should be unique within the scope of the project.
- project_
id float - project_
name str - readiness_
probe InferenceDeployment Readiness Probe Args - startup_
probe InferenceDeployment Startup Probe Args - timeout float
- containers List<Property Map>
- A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- flavor
Name String - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image String
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- listening
Port Number - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- auth
Enabled Boolean - Set to true to enable API key authentication for the inference instance.
- command String
- Command to be executed when running a container from an image.
- credentials
Name String - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description String
- envs Map<String>
- Environment variables for the inference instance.
- inference
Deployment StringId - The ID of this resource.
- liveness
Probe Property Map - logging Property Map
- name String
- The name of the deployment. This should be unique within the scope of the project.
- project
Id Number - project
Name String - readiness
Probe Property Map - startup
Probe Property Map - timeout Number
Outputs
All input properties are implicitly available as output properties. Additionally, the InferenceDeployment resource produces the following output properties:
- address str
- created_
at str - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- id str
- The provider-assigned unique ID for this managed resource.
- status str
Look up Existing InferenceDeployment Resource
Get an existing InferenceDeployment resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: InferenceDeploymentState, opts?: CustomResourceOptions): InferenceDeployment
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
address: Optional[str] = None,
auth_enabled: Optional[bool] = None,
command: Optional[str] = None,
containers: Optional[Sequence[InferenceDeploymentContainerArgs]] = None,
created_at: Optional[str] = None,
credentials_name: Optional[str] = None,
description: Optional[str] = None,
envs: Optional[Mapping[str, str]] = None,
flavor_name: Optional[str] = None,
image: Optional[str] = None,
inference_deployment_id: Optional[str] = None,
listening_port: Optional[float] = None,
liveness_probe: Optional[InferenceDeploymentLivenessProbeArgs] = None,
logging: Optional[InferenceDeploymentLoggingArgs] = None,
name: Optional[str] = None,
project_id: Optional[float] = None,
project_name: Optional[str] = None,
readiness_probe: Optional[InferenceDeploymentReadinessProbeArgs] = None,
startup_probe: Optional[InferenceDeploymentStartupProbeArgs] = None,
status: Optional[str] = None,
timeout: Optional[float] = None) -> InferenceDeployment
func GetInferenceDeployment(ctx *Context, name string, id IDInput, state *InferenceDeploymentState, opts ...ResourceOption) (*InferenceDeployment, error)
public static InferenceDeployment Get(string name, Input<string> id, InferenceDeploymentState? state, CustomResourceOptions? opts = null)
public static InferenceDeployment get(String name, Output<String> id, InferenceDeploymentState state, CustomResourceOptions options)
resources: _: type: gcore:InferenceDeployment get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Address string
- Auth
Enabled bool - Set to true to enable API key authentication for the inference instance.
- Command string
- Command to be executed when running a container from an image.
- Containers
List<Inference
Deployment Container> - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- Created
At string - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- Credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- Description string
- Envs Dictionary<string, string>
- Environment variables for the inference instance.
- Flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- Image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- Inference
Deployment stringId - The ID of this resource.
- Listening
Port double - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- Liveness
Probe InferenceDeployment Liveness Probe - Logging
Inference
Deployment Logging - Name string
- The name of the deployment. This should be unique within the scope of the project.
- Project
Id double - Project
Name string - Readiness
Probe InferenceDeployment Readiness Probe - Startup
Probe InferenceDeployment Startup Probe - Status string
- Timeout double
- Address string
- Auth
Enabled bool - Set to true to enable API key authentication for the inference instance.
- Command string
- Command to be executed when running a container from an image.
- Containers
[]Inference
Deployment Container Args - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- Created
At string - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- Credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- Description string
- Envs map[string]string
- Environment variables for the inference instance.
- Flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- Image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- Inference
Deployment stringId - The ID of this resource.
- Listening
Port float64 - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- Liveness
Probe InferenceDeployment Liveness Probe Args - Logging
Inference
Deployment Logging Args - Name string
- The name of the deployment. This should be unique within the scope of the project.
- Project
Id float64 - Project
Name string - Readiness
Probe InferenceDeployment Readiness Probe Args - Startup
Probe InferenceDeployment Startup Probe Args - Status string
- Timeout float64
- address String
- auth
Enabled Boolean - Set to true to enable API key authentication for the inference instance.
- command String
- Command to be executed when running a container from an image.
- containers
List<Inference
Deployment Container> - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- created
At String - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- credentials
Name String - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description String
- envs Map<String,String>
- Environment variables for the inference instance.
- flavor
Name String - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image String
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- inference
Deployment StringId - The ID of this resource.
- listening
Port Double - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- liveness
Probe InferenceDeployment Liveness Probe - logging
Inference
Deployment Logging - name String
- The name of the deployment. This should be unique within the scope of the project.
- project
Id Double - project
Name String - readiness
Probe InferenceDeployment Readiness Probe - startup
Probe InferenceDeployment Startup Probe - status String
- timeout Double
- address string
- auth
Enabled boolean - Set to true to enable API key authentication for the inference instance.
- command string
- Command to be executed when running a container from an image.
- containers
Inference
Deployment Container[] - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- created
At string - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- credentials
Name string - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description string
- envs {[key: string]: string}
- Environment variables for the inference instance.
- flavor
Name string - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image string
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- inference
Deployment stringId - The ID of this resource.
- listening
Port number - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- liveness
Probe InferenceDeployment Liveness Probe - logging
Inference
Deployment Logging - name string
- The name of the deployment. This should be unique within the scope of the project.
- project
Id number - project
Name string - readiness
Probe InferenceDeployment Readiness Probe - startup
Probe InferenceDeployment Startup Probe - status string
- timeout number
- address str
- auth_
enabled bool - Set to true to enable API key authentication for the inference instance.
- command str
- Command to be executed when running a container from an image.
- containers
Sequence[Inference
Deployment Container Args] - A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- created_
at str - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- credentials_
name str - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description str
- envs Mapping[str, str]
- Environment variables for the inference instance.
- flavor_
name str - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image str
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- inference_
deployment_ strid - The ID of this resource.
- listening_
port float - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- liveness_
probe InferenceDeployment Liveness Probe Args - logging
Inference
Deployment Logging Args - name str
- The name of the deployment. This should be unique within the scope of the project.
- project_
id float - project_
name str - readiness_
probe InferenceDeployment Readiness Probe Args - startup_
probe InferenceDeployment Startup Probe Args - status str
- timeout float
- address String
- auth
Enabled Boolean - Set to true to enable API key authentication for the inference instance.
- command String
- Command to be executed when running a container from an image.
- containers List<Property Map>
- A required list of container definitions. Each entry represents a container configuration, and at least one container must be specified. See the nested schema below for further details.
- created
At String - Datetime when the inference deployment was created. The format is 2025-12-28T19:14:44.180394
- credentials
Name String - Required if using a private image registry. Specifies the name of the credentials to authenticate with the registry where the container image is stored.
- description String
- envs Map<String>
- Environment variables for the inference instance.
- flavor
Name String - Specifies the resource flavor for the container, determining its allocated CPU, memory, and potentially GPU resources.
- image String
- The container image to be used for deployment. This should be a valid image reference, such as a public or private Docker image (registry.example.com/my-image:latest). Note: If the image is hosted in a private registry, you must specify credentials_name to provide authentication details.
- inference
Deployment StringId - The ID of this resource.
- listening
Port Number - The port on which the container will accept incoming traffic. This should match the port your application is configured to listen on within the container.
- liveness
Probe Property Map - logging Property Map
- name String
- The name of the deployment. This should be unique within the scope of the project.
- project
Id Number - project
Name String - readiness
Probe Property Map - startup
Probe Property Map - status String
- timeout Number
Supporting Types
InferenceDeploymentContainer, InferenceDeploymentContainerArgs
- Cooldown
Period double - Cooldown period between scaling actions in seconds
- Region
Id double - Region id for the container
- Scale
Max double - Maximum scale for the container
- Scale
Min double - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- Polling
Interval double - Polling interval for scaling triggers in seconds
- Ready
Containers double - Status of the containers deployment. Number of ready instances
- Total
Containers double - Status of the containers deployment. Total number of instances
- Triggers
Cpu doubleThreshold - CPU trigger threshold configuration
- Triggers
Gpu doubleMemory Threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- Triggers
Gpu doubleUtilization Threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- Triggers
Http doubleRate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- Triggers
Http doubleWindow - Time window for rate calculation in seconds. Required if you use http trigger
- Triggers
Memory doubleThreshold - Memory trigger threshold configuration
- Triggers
Sqs doubleActivation Queue Length - Number of messages for activation
- Triggers
Sqs stringAws Endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- Triggers
Sqs stringAws Region - AWS region. Required if you use SQS trigger
- Triggers
Sqs doubleQueue Length - Number of messages for one replica
- Triggers
Sqs stringQueue Url - URL of the SQS queue. Required if you use SQS trigger
- Triggers
Sqs boolScale On Delayed - Scale on delayed messages
- Triggers
Sqs boolScale On Flight - Scale on in-flight messages
- Triggers
Sqs stringSecret Name - Name of the secret with AWS credentials. Required if you use SQS trigger
- Cooldown
Period float64 - Cooldown period between scaling actions in seconds
- Region
Id float64 - Region id for the container
- Scale
Max float64 - Maximum scale for the container
- Scale
Min float64 - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- Polling
Interval float64 - Polling interval for scaling triggers in seconds
- Ready
Containers float64 - Status of the containers deployment. Number of ready instances
- Total
Containers float64 - Status of the containers deployment. Total number of instances
- Triggers
Cpu float64Threshold - CPU trigger threshold configuration
- Triggers
Gpu float64Memory Threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- Triggers
Gpu float64Utilization Threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- Triggers
Http float64Rate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- Triggers
Http float64Window - Time window for rate calculation in seconds. Required if you use http trigger
- Triggers
Memory float64Threshold - Memory trigger threshold configuration
- Triggers
Sqs float64Activation Queue Length - Number of messages for activation
- Triggers
Sqs stringAws Endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- Triggers
Sqs stringAws Region - AWS region. Required if you use SQS trigger
- Triggers
Sqs float64Queue Length - Number of messages for one replica
- Triggers
Sqs stringQueue Url - URL of the SQS queue. Required if you use SQS trigger
- Triggers
Sqs boolScale On Delayed - Scale on delayed messages
- Triggers
Sqs boolScale On Flight - Scale on in-flight messages
- Triggers
Sqs stringSecret Name - Name of the secret with AWS credentials. Required if you use SQS trigger
- cooldown
Period Double - Cooldown period between scaling actions in seconds
- region
Id Double - Region id for the container
- scale
Max Double - Maximum scale for the container
- scale
Min Double - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- polling
Interval Double - Polling interval for scaling triggers in seconds
- ready
Containers Double - Status of the containers deployment. Number of ready instances
- total
Containers Double - Status of the containers deployment. Total number of instances
- triggers
Cpu DoubleThreshold - CPU trigger threshold configuration
- triggers
Gpu DoubleMemory Threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- triggers
Gpu DoubleUtilization Threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- triggers
Http DoubleRate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- triggers
Http DoubleWindow - Time window for rate calculation in seconds. Required if you use http trigger
- triggers
Memory DoubleThreshold - Memory trigger threshold configuration
- triggers
Sqs DoubleActivation Queue Length - Number of messages for activation
- triggers
Sqs StringAws Endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- triggers
Sqs StringAws Region - AWS region. Required if you use SQS trigger
- triggers
Sqs DoubleQueue Length - Number of messages for one replica
- triggers
Sqs StringQueue Url - URL of the SQS queue. Required if you use SQS trigger
- triggers
Sqs BooleanScale On Delayed - Scale on delayed messages
- triggers
Sqs BooleanScale On Flight - Scale on in-flight messages
- triggers
Sqs StringSecret Name - Name of the secret with AWS credentials. Required if you use SQS trigger
- cooldown
Period number - Cooldown period between scaling actions in seconds
- region
Id number - Region id for the container
- scale
Max number - Maximum scale for the container
- scale
Min number - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- polling
Interval number - Polling interval for scaling triggers in seconds
- ready
Containers number - Status of the containers deployment. Number of ready instances
- total
Containers number - Status of the containers deployment. Total number of instances
- triggers
Cpu numberThreshold - CPU trigger threshold configuration
- triggers
Gpu numberMemory Threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- triggers
Gpu numberUtilization Threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- triggers
Http numberRate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- triggers
Http numberWindow - Time window for rate calculation in seconds. Required if you use http trigger
- triggers
Memory numberThreshold - Memory trigger threshold configuration
- triggers
Sqs numberActivation Queue Length - Number of messages for activation
- triggers
Sqs stringAws Endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- triggers
Sqs stringAws Region - AWS region. Required if you use SQS trigger
- triggers
Sqs numberQueue Length - Number of messages for one replica
- triggers
Sqs stringQueue Url - URL of the SQS queue. Required if you use SQS trigger
- triggers
Sqs booleanScale On Delayed - Scale on delayed messages
- triggers
Sqs booleanScale On Flight - Scale on in-flight messages
- triggers
Sqs stringSecret Name - Name of the secret with AWS credentials. Required if you use SQS trigger
- cooldown_
period float - Cooldown period between scaling actions in seconds
- region_
id float - Region id for the container
- scale_
max float - Maximum scale for the container
- scale_
min float - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- polling_
interval float - Polling interval for scaling triggers in seconds
- ready_
containers float - Status of the containers deployment. Number of ready instances
- total_
containers float - Status of the containers deployment. Total number of instances
- triggers_
cpu_ floatthreshold - CPU trigger threshold configuration
- triggers_
gpu_ floatmemory_ threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- triggers_
gpu_ floatutilization_ threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- triggers_
http_ floatrate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- triggers_
http_ floatwindow - Time window for rate calculation in seconds. Required if you use http trigger
- triggers_
memory_ floatthreshold - Memory trigger threshold configuration
- triggers_
sqs_ floatactivation_ queue_ length - Number of messages for activation
- triggers_
sqs_ straws_ endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- triggers_
sqs_ straws_ region - AWS region. Required if you use SQS trigger
- triggers_
sqs_ floatqueue_ length - Number of messages for one replica
- triggers_
sqs_ strqueue_ url - URL of the SQS queue. Required if you use SQS trigger
- triggers_
sqs_ boolscale_ on_ delayed - Scale on delayed messages
- triggers_
sqs_ boolscale_ on_ flight - Scale on in-flight messages
- triggers_
sqs_ strsecret_ name - Name of the secret with AWS credentials. Required if you use SQS trigger
- cooldown
Period Number - Cooldown period between scaling actions in seconds
- region
Id Number - Region id for the container
- scale
Max Number - Maximum scale for the container
- scale
Min Number - Minimum scale for the container. It can be set to 0, in which case the container will be downscaled to 0 when there is no load.
- polling
Interval Number - Polling interval for scaling triggers in seconds
- ready
Containers Number - Status of the containers deployment. Number of ready instances
- total
Containers Number - Status of the containers deployment. Total number of instances
- triggers
Cpu NumberThreshold - CPU trigger threshold configuration
- triggers
Gpu NumberMemory Threshold - GPU memory trigger threshold configuration. Calculated by DCGMFIDEVMEMCOPY_UTIL metric
- triggers
Gpu NumberUtilization Threshold - GPU utilization trigger threshold configuration. Calculated by DCGMFIDEVGPUUTIL metric
- triggers
Http NumberRate - Request count per 'window' seconds for the http trigger. Required if you use http trigger
- triggers
Http NumberWindow - Time window for rate calculation in seconds. Required if you use http trigger
- triggers
Memory NumberThreshold - Memory trigger threshold configuration
- triggers
Sqs NumberActivation Queue Length - Number of messages for activation
- triggers
Sqs StringAws Endpoint - Custom AWS endpoint, left empty to use default aws endpoint
- triggers
Sqs StringAws Region - AWS region. Required if you use SQS trigger
- triggers
Sqs NumberQueue Length - Number of messages for one replica
- triggers
Sqs StringQueue Url - URL of the SQS queue. Required if you use SQS trigger
- triggers
Sqs BooleanScale On Delayed - Scale on delayed messages
- triggers
Sqs BooleanScale On Flight - Scale on in-flight messages
- triggers
Sqs StringSecret Name - Name of the secret with AWS credentials. Required if you use SQS trigger
InferenceDeploymentLivenessProbe, InferenceDeploymentLivenessProbeArgs
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold double - Number of failed probes before the container is considered unhealthy
- Http
Get Dictionary<string, string>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get doublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay doubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds double - How often (in seconds) to perform the probe
- Success
Threshold double - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket doublePort - Port to connect to
- Timeout
Seconds double - Number of seconds after which the probe times out
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold float64 - Number of failed probes before the container is considered unhealthy
- Http
Get map[string]stringHeaders - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get float64Port - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay float64Seconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds float64 - How often (in seconds) to perform the probe
- Success
Threshold float64 - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket float64Port - Port to connect to
- Timeout
Seconds float64 - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Double - Number of failed probes before the container is considered unhealthy
- http
Get Map<String,String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get DoublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay DoubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Double - How often (in seconds) to perform the probe
- success
Threshold Double - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket DoublePort - Port to connect to
- timeout
Seconds Double - Number of seconds after which the probe times out
- enabled boolean
- Enable or disable probe
- exec
Command string - Command to execute in the container to determine the health
- failure
Threshold number - Number of failed probes before the container is considered unhealthy
- http
Get {[key: string]: string}Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get stringHost - Host name to connect to, valid only for HTTP probes
- http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get numberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay numberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds number - How often (in seconds) to perform the probe
- success
Threshold number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket numberPort - Port to connect to
- timeout
Seconds number - Number of seconds after which the probe times out
- enabled bool
- Enable or disable probe
- exec_
command str - Command to execute in the container to determine the health
- failure_
threshold float - Number of failed probes before the container is considered unhealthy
- http_
get_ Mapping[str, str]headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http_
get_ strhost - Host name to connect to, valid only for HTTP probes
- http_
get_ strpath - Path to access on the HTTP server, valid only for HTTP probes
- http_
get_ floatport - Number of the port to access on the HTTP server, valid only for HTTP probes
- http_
get_ strschema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial_
delay_ floatseconds - Number of seconds after the container has started before liveness probes are initiated
- period_
seconds float - How often (in seconds) to perform the probe
- success_
threshold float - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp_
socket_ floatport - Port to connect to
- timeout_
seconds float - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Number - Number of failed probes before the container is considered unhealthy
- http
Get Map<String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get NumberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay NumberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Number - How often (in seconds) to perform the probe
- success
Threshold Number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket NumberPort - Port to connect to
- timeout
Seconds Number - Number of seconds after which the probe times out
InferenceDeploymentLogging, InferenceDeploymentLoggingArgs
- Destination
Region doubleId - Enabled bool
- Retention
Policy doublePeriod - Topic
Name string
- Destination
Region float64Id - Enabled bool
- Retention
Policy float64Period - Topic
Name string
- destination
Region DoubleId - enabled Boolean
- retention
Policy DoublePeriod - topic
Name String
- destination
Region numberId - enabled boolean
- retention
Policy numberPeriod - topic
Name string
- destination_
region_ floatid - enabled bool
- retention_
policy_ floatperiod - topic_
name str
- destination
Region NumberId - enabled Boolean
- retention
Policy NumberPeriod - topic
Name String
InferenceDeploymentReadinessProbe, InferenceDeploymentReadinessProbeArgs
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold double - Number of failed probes before the container is considered unhealthy
- Http
Get Dictionary<string, string>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get doublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay doubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds double - How often (in seconds) to perform the probe
- Success
Threshold double - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket doublePort - Port to connect to
- Timeout
Seconds double - Number of seconds after which the probe times out
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold float64 - Number of failed probes before the container is considered unhealthy
- Http
Get map[string]stringHeaders - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get float64Port - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay float64Seconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds float64 - How often (in seconds) to perform the probe
- Success
Threshold float64 - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket float64Port - Port to connect to
- Timeout
Seconds float64 - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Double - Number of failed probes before the container is considered unhealthy
- http
Get Map<String,String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get DoublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay DoubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Double - How often (in seconds) to perform the probe
- success
Threshold Double - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket DoublePort - Port to connect to
- timeout
Seconds Double - Number of seconds after which the probe times out
- enabled boolean
- Enable or disable probe
- exec
Command string - Command to execute in the container to determine the health
- failure
Threshold number - Number of failed probes before the container is considered unhealthy
- http
Get {[key: string]: string}Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get stringHost - Host name to connect to, valid only for HTTP probes
- http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get numberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay numberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds number - How often (in seconds) to perform the probe
- success
Threshold number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket numberPort - Port to connect to
- timeout
Seconds number - Number of seconds after which the probe times out
- enabled bool
- Enable or disable probe
- exec_
command str - Command to execute in the container to determine the health
- failure_
threshold float - Number of failed probes before the container is considered unhealthy
- http_
get_ Mapping[str, str]headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http_
get_ strhost - Host name to connect to, valid only for HTTP probes
- http_
get_ strpath - Path to access on the HTTP server, valid only for HTTP probes
- http_
get_ floatport - Number of the port to access on the HTTP server, valid only for HTTP probes
- http_
get_ strschema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial_
delay_ floatseconds - Number of seconds after the container has started before liveness probes are initiated
- period_
seconds float - How often (in seconds) to perform the probe
- success_
threshold float - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp_
socket_ floatport - Port to connect to
- timeout_
seconds float - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Number - Number of failed probes before the container is considered unhealthy
- http
Get Map<String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get NumberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay NumberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Number - How often (in seconds) to perform the probe
- success
Threshold Number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket NumberPort - Port to connect to
- timeout
Seconds Number - Number of seconds after which the probe times out
InferenceDeploymentStartupProbe, InferenceDeploymentStartupProbeArgs
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold double - Number of failed probes before the container is considered unhealthy
- Http
Get Dictionary<string, string>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get doublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay doubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds double - How often (in seconds) to perform the probe
- Success
Threshold double - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket doublePort - Port to connect to
- Timeout
Seconds double - Number of seconds after which the probe times out
- Enabled bool
- Enable or disable probe
- Exec
Command string - Command to execute in the container to determine the health
- Failure
Threshold float64 - Number of failed probes before the container is considered unhealthy
- Http
Get map[string]stringHeaders - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- Http
Get stringHost - Host name to connect to, valid only for HTTP probes
- Http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- Http
Get float64Port - Number of the port to access on the HTTP server, valid only for HTTP probes
- Http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- Initial
Delay float64Seconds - Number of seconds after the container has started before liveness probes are initiated
- Period
Seconds float64 - How often (in seconds) to perform the probe
- Success
Threshold float64 - Minimum consecutive successes for the probe to be considered successful after having failed
- Tcp
Socket float64Port - Port to connect to
- Timeout
Seconds float64 - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Double - Number of failed probes before the container is considered unhealthy
- http
Get Map<String,String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get DoublePort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay DoubleSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Double - How often (in seconds) to perform the probe
- success
Threshold Double - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket DoublePort - Port to connect to
- timeout
Seconds Double - Number of seconds after which the probe times out
- enabled boolean
- Enable or disable probe
- exec
Command string - Command to execute in the container to determine the health
- failure
Threshold number - Number of failed probes before the container is considered unhealthy
- http
Get {[key: string]: string}Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get stringHost - Host name to connect to, valid only for HTTP probes
- http
Get stringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get numberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get stringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay numberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds number - How often (in seconds) to perform the probe
- success
Threshold number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket numberPort - Port to connect to
- timeout
Seconds number - Number of seconds after which the probe times out
- enabled bool
- Enable or disable probe
- exec_
command str - Command to execute in the container to determine the health
- failure_
threshold float - Number of failed probes before the container is considered unhealthy
- http_
get_ Mapping[str, str]headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http_
get_ strhost - Host name to connect to, valid only for HTTP probes
- http_
get_ strpath - Path to access on the HTTP server, valid only for HTTP probes
- http_
get_ floatport - Number of the port to access on the HTTP server, valid only for HTTP probes
- http_
get_ strschema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial_
delay_ floatseconds - Number of seconds after the container has started before liveness probes are initiated
- period_
seconds float - How often (in seconds) to perform the probe
- success_
threshold float - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp_
socket_ floatport - Port to connect to
- timeout_
seconds float - Number of seconds after which the probe times out
- enabled Boolean
- Enable or disable probe
- exec
Command String - Command to execute in the container to determine the health
- failure
Threshold Number - Number of failed probes before the container is considered unhealthy
- http
Get Map<String>Headers - HTTP headers to use when sending a HTTP GET request, valid only for HTTP probes
- http
Get StringHost - Host name to connect to, valid only for HTTP probes
- http
Get StringPath - Path to access on the HTTP server, valid only for HTTP probes
- http
Get NumberPort - Number of the port to access on the HTTP server, valid only for HTTP probes
- http
Get StringSchema - Scheme to use for connecting to the host, valid only for HTTP probes
- initial
Delay NumberSeconds - Number of seconds after the container has started before liveness probes are initiated
- period
Seconds Number - How often (in seconds) to perform the probe
- success
Threshold Number - Minimum consecutive successes for the probe to be considered successful after having failed
- tcp
Socket NumberPort - Port to connect to
- timeout
Seconds Number - Number of seconds after which the probe times out
Import
import using <project_id>:<inference_deployment_name> format
$ pulumi import gcore:index/inferenceDeployment:InferenceDeployment inf1 1:my-first-inference
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- gcore g-core/terraform-provider-gcore
- License
- Notes
- This Pulumi package is based on the
gcore
Terraform Provider.