1. Packages
  2. Google Cloud (GCP) Classic
  3. API Docs
  4. dataproc
  5. GdcSparkApplication
Google Cloud Classic v8.10.0 published on Wednesday, Nov 20, 2024 by Pulumi

gcp.dataproc.GdcSparkApplication

Explore with Pulumi AI

gcp logo
Google Cloud Classic v8.10.0 published on Wednesday, Nov 20, 2024 by Pulumi

    A Spark application is a single Spark workload run on a GDC cluster.

    To get more information about SparkApplication, see:

    Example Usage

    Dataprocgdc Sparkapplication Basic

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-spark-app-basic",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        sparkApplicationConfig: {
            mainClass: "org.apache.spark.examples.SparkPi",
            jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            args: ["10000"],
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-spark-app-basic",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        spark_application_config={
            "main_class": "org.apache.spark.examples.SparkPi",
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "args": ["10000"],
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-spark-app-basic"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			SparkApplicationConfig: &dataproc.GdcSparkApplicationSparkApplicationConfigArgs{
    				MainClass: pulumi.String("org.apache.spark.examples.SparkPi"),
    				JarFileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    				Args: pulumi.StringArray{
    					pulumi.String("10000"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-spark-app-basic",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            SparkApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkApplicationConfigArgs
            {
                MainClass = "org.apache.spark.examples.SparkPi",
                JarFileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
                Args = new[]
                {
                    "10000",
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkApplicationConfigArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-spark-app-basic")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .sparkApplicationConfig(GdcSparkApplicationSparkApplicationConfigArgs.builder()
                    .mainClass("org.apache.spark.examples.SparkPi")
                    .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .args("10000")
                    .build())
                .build());
    
        }
    }
    
    resources:
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-spark-app-basic
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          sparkApplicationConfig:
            mainClass: org.apache.spark.examples.SparkPi
            jarFileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
            args:
              - '10000'
    

    Dataprocgdc Sparkapplication

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const appEnv = new gcp.dataproc.GdcApplicationEnvironment("app_env", {
        applicationEnvironmentId: "tf-e2e-spark-app-env",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
    });
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-spark-app",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        labels: {
            "test-label": "label-value",
        },
        annotations: {
            an_annotation: "annotation_value",
        },
        properties: {
            "spark.executor.instances": "2",
        },
        applicationEnvironment: appEnv.name,
        version: "1.2",
        sparkApplicationConfig: {
            mainJarFileUri: "file:///usr/lib/spark/examples/jars/spark-examples.jar",
            jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            archiveUris: ["file://usr/lib/spark/examples/spark-examples.jar"],
            fileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    app_env = gcp.dataproc.GdcApplicationEnvironment("app_env",
        application_environment_id="tf-e2e-spark-app-env",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default")
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-spark-app",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        labels={
            "test-label": "label-value",
        },
        annotations={
            "an_annotation": "annotation_value",
        },
        properties={
            "spark.executor.instances": "2",
        },
        application_environment=app_env.name,
        version="1.2",
        spark_application_config={
            "main_jar_file_uri": "file:///usr/lib/spark/examples/jars/spark-examples.jar",
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "archive_uris": ["file://usr/lib/spark/examples/spark-examples.jar"],
            "file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		appEnv, err := dataproc.NewGdcApplicationEnvironment(ctx, "app_env", &dataproc.GdcApplicationEnvironmentArgs{
    			ApplicationEnvironmentId: pulumi.String("tf-e2e-spark-app-env"),
    			Serviceinstance:          pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:                  pulumi.String("my-project"),
    			Location:                 pulumi.String("us-west2"),
    			Namespace:                pulumi.String("default"),
    		})
    		if err != nil {
    			return err
    		}
    		_, err = dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-spark-app"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			Labels: pulumi.StringMap{
    				"test-label": pulumi.String("label-value"),
    			},
    			Annotations: pulumi.StringMap{
    				"an_annotation": pulumi.String("annotation_value"),
    			},
    			Properties: pulumi.StringMap{
    				"spark.executor.instances": pulumi.String("2"),
    			},
    			ApplicationEnvironment: appEnv.Name,
    			Version:                pulumi.String("1.2"),
    			SparkApplicationConfig: &dataproc.GdcSparkApplicationSparkApplicationConfigArgs{
    				MainJarFileUri: pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				JarFileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    				ArchiveUris: pulumi.StringArray{
    					pulumi.String("file://usr/lib/spark/examples/spark-examples.jar"),
    				},
    				FileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var appEnv = new Gcp.Dataproc.GdcApplicationEnvironment("app_env", new()
        {
            ApplicationEnvironmentId = "tf-e2e-spark-app-env",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
        });
    
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-spark-app",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            Labels = 
            {
                { "test-label", "label-value" },
            },
            Annotations = 
            {
                { "an_annotation", "annotation_value" },
            },
            Properties = 
            {
                { "spark.executor.instances", "2" },
            },
            ApplicationEnvironment = appEnv.Name,
            Version = "1.2",
            SparkApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkApplicationConfigArgs
            {
                MainJarFileUri = "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                JarFileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
                ArchiveUris = new[]
                {
                    "file://usr/lib/spark/examples/spark-examples.jar",
                },
                FileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcApplicationEnvironment;
    import com.pulumi.gcp.dataproc.GdcApplicationEnvironmentArgs;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkApplicationConfigArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var appEnv = new GdcApplicationEnvironment("appEnv", GdcApplicationEnvironmentArgs.builder()
                .applicationEnvironmentId("tf-e2e-spark-app-env")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .build());
    
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-spark-app")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .labels(Map.of("test-label", "label-value"))
                .annotations(Map.of("an_annotation", "annotation_value"))
                .properties(Map.of("spark.executor.instances", "2"))
                .applicationEnvironment(appEnv.name())
                .version("1.2")
                .sparkApplicationConfig(GdcSparkApplicationSparkApplicationConfigArgs.builder()
                    .mainJarFileUri("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .archiveUris("file://usr/lib/spark/examples/spark-examples.jar")
                    .fileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .build())
                .build());
    
        }
    }
    
    resources:
      appEnv:
        type: gcp:dataproc:GdcApplicationEnvironment
        name: app_env
        properties:
          applicationEnvironmentId: tf-e2e-spark-app-env
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-spark-app
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          labels:
            test-label: label-value
          annotations:
            an_annotation: annotation_value
          properties:
            spark.executor.instances: '2'
          applicationEnvironment: ${appEnv.name}
          version: '1.2'
          sparkApplicationConfig:
            mainJarFileUri: file:///usr/lib/spark/examples/jars/spark-examples.jar
            jarFileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
            archiveUris:
              - file://usr/lib/spark/examples/spark-examples.jar
            fileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
    

    Dataprocgdc Sparkapplication Pyspark

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-pyspark-app",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        displayName: "A Pyspark application for a Terraform create test",
        dependencyImages: ["gcr.io/some/image"],
        pysparkApplicationConfig: {
            mainPythonFileUri: "gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py",
            jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            pythonFileUris: ["gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py"],
            fileUris: ["file://usr/lib/spark/examples/spark-examples.jar"],
            archiveUris: ["file://usr/lib/spark/examples/spark-examples.jar"],
            args: ["10"],
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-pyspark-app",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        display_name="A Pyspark application for a Terraform create test",
        dependency_images=["gcr.io/some/image"],
        pyspark_application_config={
            "main_python_file_uri": "gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py",
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "python_file_uris": ["gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py"],
            "file_uris": ["file://usr/lib/spark/examples/spark-examples.jar"],
            "archive_uris": ["file://usr/lib/spark/examples/spark-examples.jar"],
            "args": ["10"],
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-pyspark-app"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			DisplayName:        pulumi.String("A Pyspark application for a Terraform create test"),
    			DependencyImages: pulumi.StringArray{
    				pulumi.String("gcr.io/some/image"),
    			},
    			PysparkApplicationConfig: &dataproc.GdcSparkApplicationPysparkApplicationConfigArgs{
    				MainPythonFileUri: pulumi.String("gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py"),
    				JarFileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    				PythonFileUris: pulumi.StringArray{
    					pulumi.String("gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py"),
    				},
    				FileUris: pulumi.StringArray{
    					pulumi.String("file://usr/lib/spark/examples/spark-examples.jar"),
    				},
    				ArchiveUris: pulumi.StringArray{
    					pulumi.String("file://usr/lib/spark/examples/spark-examples.jar"),
    				},
    				Args: pulumi.StringArray{
    					pulumi.String("10"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-pyspark-app",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            DisplayName = "A Pyspark application for a Terraform create test",
            DependencyImages = new[]
            {
                "gcr.io/some/image",
            },
            PysparkApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationPysparkApplicationConfigArgs
            {
                MainPythonFileUri = "gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py",
                JarFileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
                PythonFileUris = new[]
                {
                    "gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py",
                },
                FileUris = new[]
                {
                    "file://usr/lib/spark/examples/spark-examples.jar",
                },
                ArchiveUris = new[]
                {
                    "file://usr/lib/spark/examples/spark-examples.jar",
                },
                Args = new[]
                {
                    "10",
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationPysparkApplicationConfigArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-pyspark-app")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .displayName("A Pyspark application for a Terraform create test")
                .dependencyImages("gcr.io/some/image")
                .pysparkApplicationConfig(GdcSparkApplicationPysparkApplicationConfigArgs.builder()
                    .mainPythonFileUri("gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py")
                    .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .pythonFileUris("gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py")
                    .fileUris("file://usr/lib/spark/examples/spark-examples.jar")
                    .archiveUris("file://usr/lib/spark/examples/spark-examples.jar")
                    .args("10")
                    .build())
                .build());
    
        }
    }
    
    resources:
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-pyspark-app
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          displayName: A Pyspark application for a Terraform create test
          dependencyImages:
            - gcr.io/some/image
          pysparkApplicationConfig:
            mainPythonFileUri: gs://goog-dataproc-initialization-actions-us-west2/conda/test_conda.py
            jarFileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
            pythonFileUris:
              - gs://goog-dataproc-initialization-actions-us-west2/conda/get-sys-exec.py
            fileUris:
              - file://usr/lib/spark/examples/spark-examples.jar
            archiveUris:
              - file://usr/lib/spark/examples/spark-examples.jar
            args:
              - '10'
    

    Dataprocgdc Sparkapplication Sparkr

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-sparkr-app",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        displayName: "A SparkR application for a Terraform create test",
        sparkRApplicationConfig: {
            mainRFileUri: "gs://some-bucket/something.R",
            fileUris: ["file://usr/lib/spark/examples/spark-examples.jar"],
            archiveUris: ["file://usr/lib/spark/examples/spark-examples.jar"],
            args: ["10"],
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-sparkr-app",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        display_name="A SparkR application for a Terraform create test",
        spark_r_application_config={
            "main_r_file_uri": "gs://some-bucket/something.R",
            "file_uris": ["file://usr/lib/spark/examples/spark-examples.jar"],
            "archive_uris": ["file://usr/lib/spark/examples/spark-examples.jar"],
            "args": ["10"],
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-sparkr-app"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			DisplayName:        pulumi.String("A SparkR application for a Terraform create test"),
    			SparkRApplicationConfig: &dataproc.GdcSparkApplicationSparkRApplicationConfigArgs{
    				MainRFileUri: pulumi.String("gs://some-bucket/something.R"),
    				FileUris: pulumi.StringArray{
    					pulumi.String("file://usr/lib/spark/examples/spark-examples.jar"),
    				},
    				ArchiveUris: pulumi.StringArray{
    					pulumi.String("file://usr/lib/spark/examples/spark-examples.jar"),
    				},
    				Args: pulumi.StringArray{
    					pulumi.String("10"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-sparkr-app",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            DisplayName = "A SparkR application for a Terraform create test",
            SparkRApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkRApplicationConfigArgs
            {
                MainRFileUri = "gs://some-bucket/something.R",
                FileUris = new[]
                {
                    "file://usr/lib/spark/examples/spark-examples.jar",
                },
                ArchiveUris = new[]
                {
                    "file://usr/lib/spark/examples/spark-examples.jar",
                },
                Args = new[]
                {
                    "10",
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkRApplicationConfigArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-sparkr-app")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .displayName("A SparkR application for a Terraform create test")
                .sparkRApplicationConfig(GdcSparkApplicationSparkRApplicationConfigArgs.builder()
                    .mainRFileUri("gs://some-bucket/something.R")
                    .fileUris("file://usr/lib/spark/examples/spark-examples.jar")
                    .archiveUris("file://usr/lib/spark/examples/spark-examples.jar")
                    .args("10")
                    .build())
                .build());
    
        }
    }
    
    resources:
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-sparkr-app
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          displayName: A SparkR application for a Terraform create test
          sparkRApplicationConfig:
            mainRFileUri: gs://some-bucket/something.R
            fileUris:
              - file://usr/lib/spark/examples/spark-examples.jar
            archiveUris:
              - file://usr/lib/spark/examples/spark-examples.jar
            args:
              - '10'
    

    Dataprocgdc Sparkapplication Sparksql

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-sparksql-app",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        displayName: "A SparkSql application for a Terraform create test",
        sparkSqlApplicationConfig: {
            jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            queryList: {
                queries: ["show tables;"],
            },
            scriptVariables: {
                MY_VAR: "1",
            },
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-sparksql-app",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        display_name="A SparkSql application for a Terraform create test",
        spark_sql_application_config={
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "query_list": {
                "queries": ["show tables;"],
            },
            "script_variables": {
                "MY_VAR": "1",
            },
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-sparksql-app"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			DisplayName:        pulumi.String("A SparkSql application for a Terraform create test"),
    			SparkSqlApplicationConfig: &dataproc.GdcSparkApplicationSparkSqlApplicationConfigArgs{
    				JarFileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    				QueryList: &dataproc.GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs{
    					Queries: pulumi.StringArray{
    						pulumi.String("show tables;"),
    					},
    				},
    				ScriptVariables: pulumi.StringMap{
    					"MY_VAR": pulumi.String("1"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-sparksql-app",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            DisplayName = "A SparkSql application for a Terraform create test",
            SparkSqlApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkSqlApplicationConfigArgs
            {
                JarFileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
                QueryList = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs
                {
                    Queries = new[]
                    {
                        "show tables;",
                    },
                },
                ScriptVariables = 
                {
                    { "MY_VAR", "1" },
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkSqlApplicationConfigArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-sparksql-app")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .displayName("A SparkSql application for a Terraform create test")
                .sparkSqlApplicationConfig(GdcSparkApplicationSparkSqlApplicationConfigArgs.builder()
                    .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .queryList(GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs.builder()
                        .queries("show tables;")
                        .build())
                    .scriptVariables(Map.of("MY_VAR", "1"))
                    .build())
                .build());
    
        }
    }
    
    resources:
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-sparksql-app
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          displayName: A SparkSql application for a Terraform create test
          sparkSqlApplicationConfig:
            jarFileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
            queryList:
              queries:
                - show tables;
            scriptVariables:
              MY_VAR: '1'
    

    Dataprocgdc Sparkapplication Sparksql Query File

    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const spark_application = new gcp.dataproc.GdcSparkApplication("spark-application", {
        sparkApplicationId: "tf-e2e-sparksql-app",
        serviceinstance: "do-not-delete-dataproc-gdc-instance",
        project: "my-project",
        location: "us-west2",
        namespace: "default",
        displayName: "A SparkSql application for a Terraform create test",
        sparkSqlApplicationConfig: {
            jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            queryFileUri: "gs://some-bucket/something.sql",
            scriptVariables: {
                MY_VAR: "1",
            },
        },
    });
    
    import pulumi
    import pulumi_gcp as gcp
    
    spark_application = gcp.dataproc.GdcSparkApplication("spark-application",
        spark_application_id="tf-e2e-sparksql-app",
        serviceinstance="do-not-delete-dataproc-gdc-instance",
        project="my-project",
        location="us-west2",
        namespace="default",
        display_name="A SparkSql application for a Terraform create test",
        spark_sql_application_config={
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "query_file_uri": "gs://some-bucket/something.sql",
            "script_variables": {
                "MY_VAR": "1",
            },
        })
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataproc"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := dataproc.NewGdcSparkApplication(ctx, "spark-application", &dataproc.GdcSparkApplicationArgs{
    			SparkApplicationId: pulumi.String("tf-e2e-sparksql-app"),
    			Serviceinstance:    pulumi.String("do-not-delete-dataproc-gdc-instance"),
    			Project:            pulumi.String("my-project"),
    			Location:           pulumi.String("us-west2"),
    			Namespace:          pulumi.String("default"),
    			DisplayName:        pulumi.String("A SparkSql application for a Terraform create test"),
    			SparkSqlApplicationConfig: &dataproc.GdcSparkApplicationSparkSqlApplicationConfigArgs{
    				JarFileUris: pulumi.StringArray{
    					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
    				},
    				QueryFileUri: pulumi.String("gs://some-bucket/something.sql"),
    				ScriptVariables: pulumi.StringMap{
    					"MY_VAR": pulumi.String("1"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var spark_application = new Gcp.Dataproc.GdcSparkApplication("spark-application", new()
        {
            SparkApplicationId = "tf-e2e-sparksql-app",
            Serviceinstance = "do-not-delete-dataproc-gdc-instance",
            Project = "my-project",
            Location = "us-west2",
            Namespace = "default",
            DisplayName = "A SparkSql application for a Terraform create test",
            SparkSqlApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkSqlApplicationConfigArgs
            {
                JarFileUris = new[]
                {
                    "file:///usr/lib/spark/examples/jars/spark-examples.jar",
                },
                QueryFileUri = "gs://some-bucket/something.sql",
                ScriptVariables = 
                {
                    { "MY_VAR", "1" },
                },
            },
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.dataproc.GdcSparkApplication;
    import com.pulumi.gcp.dataproc.GdcSparkApplicationArgs;
    import com.pulumi.gcp.dataproc.inputs.GdcSparkApplicationSparkSqlApplicationConfigArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var spark_application = new GdcSparkApplication("spark-application", GdcSparkApplicationArgs.builder()
                .sparkApplicationId("tf-e2e-sparksql-app")
                .serviceinstance("do-not-delete-dataproc-gdc-instance")
                .project("my-project")
                .location("us-west2")
                .namespace("default")
                .displayName("A SparkSql application for a Terraform create test")
                .sparkSqlApplicationConfig(GdcSparkApplicationSparkSqlApplicationConfigArgs.builder()
                    .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
                    .queryFileUri("gs://some-bucket/something.sql")
                    .scriptVariables(Map.of("MY_VAR", "1"))
                    .build())
                .build());
    
        }
    }
    
    resources:
      spark-application:
        type: gcp:dataproc:GdcSparkApplication
        properties:
          sparkApplicationId: tf-e2e-sparksql-app
          serviceinstance: do-not-delete-dataproc-gdc-instance
          project: my-project
          location: us-west2
          namespace: default
          displayName: A SparkSql application for a Terraform create test
          sparkSqlApplicationConfig:
            jarFileUris:
              - file:///usr/lib/spark/examples/jars/spark-examples.jar
            queryFileUri: gs://some-bucket/something.sql
            scriptVariables:
              MY_VAR: '1'
    

    Create GdcSparkApplication Resource

    Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.

    Constructor syntax

    new GdcSparkApplication(name: string, args: GdcSparkApplicationArgs, opts?: CustomResourceOptions);
    @overload
    def GdcSparkApplication(resource_name: str,
                            args: GdcSparkApplicationArgs,
                            opts: Optional[ResourceOptions] = None)
    
    @overload
    def GdcSparkApplication(resource_name: str,
                            opts: Optional[ResourceOptions] = None,
                            location: Optional[str] = None,
                            spark_application_id: Optional[str] = None,
                            serviceinstance: Optional[str] = None,
                            labels: Optional[Mapping[str, str]] = None,
                            annotations: Optional[Mapping[str, str]] = None,
                            display_name: Optional[str] = None,
                            namespace: Optional[str] = None,
                            project: Optional[str] = None,
                            properties: Optional[Mapping[str, str]] = None,
                            pyspark_application_config: Optional[GdcSparkApplicationPysparkApplicationConfigArgs] = None,
                            dependency_images: Optional[Sequence[str]] = None,
                            spark_application_config: Optional[GdcSparkApplicationSparkApplicationConfigArgs] = None,
                            application_environment: Optional[str] = None,
                            spark_r_application_config: Optional[GdcSparkApplicationSparkRApplicationConfigArgs] = None,
                            spark_sql_application_config: Optional[GdcSparkApplicationSparkSqlApplicationConfigArgs] = None,
                            version: Optional[str] = None)
    func NewGdcSparkApplication(ctx *Context, name string, args GdcSparkApplicationArgs, opts ...ResourceOption) (*GdcSparkApplication, error)
    public GdcSparkApplication(string name, GdcSparkApplicationArgs args, CustomResourceOptions? opts = null)
    public GdcSparkApplication(String name, GdcSparkApplicationArgs args)
    public GdcSparkApplication(String name, GdcSparkApplicationArgs args, CustomResourceOptions options)
    
    type: gcp:dataproc:GdcSparkApplication
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    

    Parameters

    name string
    The unique name of the resource.
    args GdcSparkApplicationArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args GdcSparkApplicationArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args GdcSparkApplicationArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args GdcSparkApplicationArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args GdcSparkApplicationArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    Constructor example

    The following reference example uses placeholder values for all input properties.

    var gdcSparkApplicationResource = new Gcp.Dataproc.GdcSparkApplication("gdcSparkApplicationResource", new()
    {
        Location = "string",
        SparkApplicationId = "string",
        Serviceinstance = "string",
        Labels = 
        {
            { "string", "string" },
        },
        Annotations = 
        {
            { "string", "string" },
        },
        DisplayName = "string",
        Namespace = "string",
        Project = "string",
        Properties = 
        {
            { "string", "string" },
        },
        PysparkApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationPysparkApplicationConfigArgs
        {
            MainPythonFileUri = "string",
            ArchiveUris = new[]
            {
                "string",
            },
            Args = new[]
            {
                "string",
            },
            FileUris = new[]
            {
                "string",
            },
            JarFileUris = new[]
            {
                "string",
            },
            PythonFileUris = new[]
            {
                "string",
            },
        },
        DependencyImages = new[]
        {
            "string",
        },
        SparkApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkApplicationConfigArgs
        {
            ArchiveUris = new[]
            {
                "string",
            },
            Args = new[]
            {
                "string",
            },
            FileUris = new[]
            {
                "string",
            },
            JarFileUris = new[]
            {
                "string",
            },
            MainClass = "string",
            MainJarFileUri = "string",
        },
        ApplicationEnvironment = "string",
        SparkRApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkRApplicationConfigArgs
        {
            MainRFileUri = "string",
            ArchiveUris = new[]
            {
                "string",
            },
            Args = new[]
            {
                "string",
            },
            FileUris = new[]
            {
                "string",
            },
        },
        SparkSqlApplicationConfig = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkSqlApplicationConfigArgs
        {
            JarFileUris = new[]
            {
                "string",
            },
            QueryFileUri = "string",
            QueryList = new Gcp.Dataproc.Inputs.GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs
            {
                Queries = new[]
                {
                    "string",
                },
            },
            ScriptVariables = 
            {
                { "string", "string" },
            },
        },
        Version = "string",
    });
    
    example, err := dataproc.NewGdcSparkApplication(ctx, "gdcSparkApplicationResource", &dataproc.GdcSparkApplicationArgs{
    	Location:           pulumi.String("string"),
    	SparkApplicationId: pulumi.String("string"),
    	Serviceinstance:    pulumi.String("string"),
    	Labels: pulumi.StringMap{
    		"string": pulumi.String("string"),
    	},
    	Annotations: pulumi.StringMap{
    		"string": pulumi.String("string"),
    	},
    	DisplayName: pulumi.String("string"),
    	Namespace:   pulumi.String("string"),
    	Project:     pulumi.String("string"),
    	Properties: pulumi.StringMap{
    		"string": pulumi.String("string"),
    	},
    	PysparkApplicationConfig: &dataproc.GdcSparkApplicationPysparkApplicationConfigArgs{
    		MainPythonFileUri: pulumi.String("string"),
    		ArchiveUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		Args: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		FileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		JarFileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		PythonFileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    	},
    	DependencyImages: pulumi.StringArray{
    		pulumi.String("string"),
    	},
    	SparkApplicationConfig: &dataproc.GdcSparkApplicationSparkApplicationConfigArgs{
    		ArchiveUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		Args: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		FileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		JarFileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		MainClass:      pulumi.String("string"),
    		MainJarFileUri: pulumi.String("string"),
    	},
    	ApplicationEnvironment: pulumi.String("string"),
    	SparkRApplicationConfig: &dataproc.GdcSparkApplicationSparkRApplicationConfigArgs{
    		MainRFileUri: pulumi.String("string"),
    		ArchiveUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		Args: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		FileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    	},
    	SparkSqlApplicationConfig: &dataproc.GdcSparkApplicationSparkSqlApplicationConfigArgs{
    		JarFileUris: pulumi.StringArray{
    			pulumi.String("string"),
    		},
    		QueryFileUri: pulumi.String("string"),
    		QueryList: &dataproc.GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs{
    			Queries: pulumi.StringArray{
    				pulumi.String("string"),
    			},
    		},
    		ScriptVariables: pulumi.StringMap{
    			"string": pulumi.String("string"),
    		},
    	},
    	Version: pulumi.String("string"),
    })
    
    var gdcSparkApplicationResource = new GdcSparkApplication("gdcSparkApplicationResource", GdcSparkApplicationArgs.builder()
        .location("string")
        .sparkApplicationId("string")
        .serviceinstance("string")
        .labels(Map.of("string", "string"))
        .annotations(Map.of("string", "string"))
        .displayName("string")
        .namespace("string")
        .project("string")
        .properties(Map.of("string", "string"))
        .pysparkApplicationConfig(GdcSparkApplicationPysparkApplicationConfigArgs.builder()
            .mainPythonFileUri("string")
            .archiveUris("string")
            .args("string")
            .fileUris("string")
            .jarFileUris("string")
            .pythonFileUris("string")
            .build())
        .dependencyImages("string")
        .sparkApplicationConfig(GdcSparkApplicationSparkApplicationConfigArgs.builder()
            .archiveUris("string")
            .args("string")
            .fileUris("string")
            .jarFileUris("string")
            .mainClass("string")
            .mainJarFileUri("string")
            .build())
        .applicationEnvironment("string")
        .sparkRApplicationConfig(GdcSparkApplicationSparkRApplicationConfigArgs.builder()
            .mainRFileUri("string")
            .archiveUris("string")
            .args("string")
            .fileUris("string")
            .build())
        .sparkSqlApplicationConfig(GdcSparkApplicationSparkSqlApplicationConfigArgs.builder()
            .jarFileUris("string")
            .queryFileUri("string")
            .queryList(GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs.builder()
                .queries("string")
                .build())
            .scriptVariables(Map.of("string", "string"))
            .build())
        .version("string")
        .build());
    
    gdc_spark_application_resource = gcp.dataproc.GdcSparkApplication("gdcSparkApplicationResource",
        location="string",
        spark_application_id="string",
        serviceinstance="string",
        labels={
            "string": "string",
        },
        annotations={
            "string": "string",
        },
        display_name="string",
        namespace="string",
        project="string",
        properties={
            "string": "string",
        },
        pyspark_application_config={
            "main_python_file_uri": "string",
            "archive_uris": ["string"],
            "args": ["string"],
            "file_uris": ["string"],
            "jar_file_uris": ["string"],
            "python_file_uris": ["string"],
        },
        dependency_images=["string"],
        spark_application_config={
            "archive_uris": ["string"],
            "args": ["string"],
            "file_uris": ["string"],
            "jar_file_uris": ["string"],
            "main_class": "string",
            "main_jar_file_uri": "string",
        },
        application_environment="string",
        spark_r_application_config={
            "main_r_file_uri": "string",
            "archive_uris": ["string"],
            "args": ["string"],
            "file_uris": ["string"],
        },
        spark_sql_application_config={
            "jar_file_uris": ["string"],
            "query_file_uri": "string",
            "query_list": {
                "queries": ["string"],
            },
            "script_variables": {
                "string": "string",
            },
        },
        version="string")
    
    const gdcSparkApplicationResource = new gcp.dataproc.GdcSparkApplication("gdcSparkApplicationResource", {
        location: "string",
        sparkApplicationId: "string",
        serviceinstance: "string",
        labels: {
            string: "string",
        },
        annotations: {
            string: "string",
        },
        displayName: "string",
        namespace: "string",
        project: "string",
        properties: {
            string: "string",
        },
        pysparkApplicationConfig: {
            mainPythonFileUri: "string",
            archiveUris: ["string"],
            args: ["string"],
            fileUris: ["string"],
            jarFileUris: ["string"],
            pythonFileUris: ["string"],
        },
        dependencyImages: ["string"],
        sparkApplicationConfig: {
            archiveUris: ["string"],
            args: ["string"],
            fileUris: ["string"],
            jarFileUris: ["string"],
            mainClass: "string",
            mainJarFileUri: "string",
        },
        applicationEnvironment: "string",
        sparkRApplicationConfig: {
            mainRFileUri: "string",
            archiveUris: ["string"],
            args: ["string"],
            fileUris: ["string"],
        },
        sparkSqlApplicationConfig: {
            jarFileUris: ["string"],
            queryFileUri: "string",
            queryList: {
                queries: ["string"],
            },
            scriptVariables: {
                string: "string",
            },
        },
        version: "string",
    });
    
    type: gcp:dataproc:GdcSparkApplication
    properties:
        annotations:
            string: string
        applicationEnvironment: string
        dependencyImages:
            - string
        displayName: string
        labels:
            string: string
        location: string
        namespace: string
        project: string
        properties:
            string: string
        pysparkApplicationConfig:
            archiveUris:
                - string
            args:
                - string
            fileUris:
                - string
            jarFileUris:
                - string
            mainPythonFileUri: string
            pythonFileUris:
                - string
        serviceinstance: string
        sparkApplicationConfig:
            archiveUris:
                - string
            args:
                - string
            fileUris:
                - string
            jarFileUris:
                - string
            mainClass: string
            mainJarFileUri: string
        sparkApplicationId: string
        sparkRApplicationConfig:
            archiveUris:
                - string
            args:
                - string
            fileUris:
                - string
            mainRFileUri: string
        sparkSqlApplicationConfig:
            jarFileUris:
                - string
            queryFileUri: string
            queryList:
                queries:
                    - string
            scriptVariables:
                string: string
        version: string
    

    GdcSparkApplication Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.

    The GdcSparkApplication resource accepts the following input properties:

    Location string
    The location of the spark application.
    Serviceinstance string
    The id of the service instance to which this spark application belongs.
    SparkApplicationId string
    The id of the application


    Annotations Dictionary<string, string>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    ApplicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    DependencyImages List<string>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    DisplayName string
    User-provided human-readable name to be used in user interfaces.
    Labels Dictionary<string, string>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    Namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    Project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    Properties Dictionary<string, string>
    application-specific properties.
    PysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    SparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    SparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    SparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    Version string
    The Dataproc version of this application.
    Location string
    The location of the spark application.
    Serviceinstance string
    The id of the service instance to which this spark application belongs.
    SparkApplicationId string
    The id of the application


    Annotations map[string]string
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    ApplicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    DependencyImages []string
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    DisplayName string
    User-provided human-readable name to be used in user interfaces.
    Labels map[string]string
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    Namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    Project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    Properties map[string]string
    application-specific properties.
    PysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfigArgs
    Represents the PySparkApplicationConfig. Structure is documented below.
    SparkApplicationConfig GdcSparkApplicationSparkApplicationConfigArgs
    Represents the SparkApplicationConfig. Structure is documented below.
    SparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    SparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    Version string
    The Dataproc version of this application.
    location String
    The location of the spark application.
    serviceinstance String
    The id of the service instance to which this spark application belongs.
    sparkApplicationId String
    The id of the application


    annotations Map<String,String>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment String
    An ApplicationEnvironment from which to inherit configuration properties.
    dependencyImages List<String>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName String
    User-provided human-readable name to be used in user interfaces.
    labels Map<String,String>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    namespace String
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    project String
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Map<String,String>
    application-specific properties.
    pysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    sparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    version String
    The Dataproc version of this application.
    location string
    The location of the spark application.
    serviceinstance string
    The id of the service instance to which this spark application belongs.
    sparkApplicationId string
    The id of the application


    annotations {[key: string]: string}
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    dependencyImages string[]
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName string
    User-provided human-readable name to be used in user interfaces.
    labels {[key: string]: string}
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties {[key: string]: string}
    application-specific properties.
    pysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    sparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    version string
    The Dataproc version of this application.
    location str
    The location of the spark application.
    serviceinstance str
    The id of the service instance to which this spark application belongs.
    spark_application_id str
    The id of the application


    annotations Mapping[str, str]
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    application_environment str
    An ApplicationEnvironment from which to inherit configuration properties.
    dependency_images Sequence[str]
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    display_name str
    User-provided human-readable name to be used in user interfaces.
    labels Mapping[str, str]
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    namespace str
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    project str
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Mapping[str, str]
    application-specific properties.
    pyspark_application_config GdcSparkApplicationPysparkApplicationConfigArgs
    Represents the PySparkApplicationConfig. Structure is documented below.
    spark_application_config GdcSparkApplicationSparkApplicationConfigArgs
    Represents the SparkApplicationConfig. Structure is documented below.
    spark_r_application_config GdcSparkApplicationSparkRApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    spark_sql_application_config GdcSparkApplicationSparkSqlApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    version str
    The Dataproc version of this application.
    location String
    The location of the spark application.
    serviceinstance String
    The id of the service instance to which this spark application belongs.
    sparkApplicationId String
    The id of the application


    annotations Map<String>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment String
    An ApplicationEnvironment from which to inherit configuration properties.
    dependencyImages List<String>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName String
    User-provided human-readable name to be used in user interfaces.
    labels Map<String>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    namespace String
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    project String
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Map<String>
    application-specific properties.
    pysparkApplicationConfig Property Map
    Represents the PySparkApplicationConfig. Structure is documented below.
    sparkApplicationConfig Property Map
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkRApplicationConfig Property Map
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig Property Map
    Represents the SparkRApplicationConfig. Structure is documented below.
    version String
    The Dataproc version of this application.

    Outputs

    All input properties are implicitly available as output properties. Additionally, the GdcSparkApplication resource produces the following output properties:

    CreateTime string
    The timestamp when the resource was created.
    EffectiveAnnotations Dictionary<string, string>
    EffectiveLabels Dictionary<string, string>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    Id string
    The provider-assigned unique ID for this managed resource.
    MonitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    Name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    OutputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    PulumiLabels Dictionary<string, string>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    Reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    State string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    StateMessage string
    A message explaining the current state.
    Uid string
    System generated unique identifier for this application, formatted as UUID4.
    UpdateTime string
    The timestamp when the resource was most recently updated.
    CreateTime string
    The timestamp when the resource was created.
    EffectiveAnnotations map[string]string
    EffectiveLabels map[string]string
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    Id string
    The provider-assigned unique ID for this managed resource.
    MonitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    Name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    OutputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    PulumiLabels map[string]string
    The combination of labels configured directly on the resource and default labels configured on the provider.
    Reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    State string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    StateMessage string
    A message explaining the current state.
    Uid string
    System generated unique identifier for this application, formatted as UUID4.
    UpdateTime string
    The timestamp when the resource was most recently updated.
    createTime String
    The timestamp when the resource was created.
    effectiveAnnotations Map<String,String>
    effectiveLabels Map<String,String>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    id String
    The provider-assigned unique ID for this managed resource.
    monitoringEndpoint String
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name String
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    outputUri String
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    pulumiLabels Map<String,String>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    reconciling Boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    state String
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage String
    A message explaining the current state.
    uid String
    System generated unique identifier for this application, formatted as UUID4.
    updateTime String
    The timestamp when the resource was most recently updated.
    createTime string
    The timestamp when the resource was created.
    effectiveAnnotations {[key: string]: string}
    effectiveLabels {[key: string]: string}
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    id string
    The provider-assigned unique ID for this managed resource.
    monitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    outputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    pulumiLabels {[key: string]: string}
    The combination of labels configured directly on the resource and default labels configured on the provider.
    reconciling boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    state string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage string
    A message explaining the current state.
    uid string
    System generated unique identifier for this application, formatted as UUID4.
    updateTime string
    The timestamp when the resource was most recently updated.
    create_time str
    The timestamp when the resource was created.
    effective_annotations Mapping[str, str]
    effective_labels Mapping[str, str]
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    id str
    The provider-assigned unique ID for this managed resource.
    monitoring_endpoint str
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name str
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    output_uri str
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    pulumi_labels Mapping[str, str]
    The combination of labels configured directly on the resource and default labels configured on the provider.
    reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    state str
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    state_message str
    A message explaining the current state.
    uid str
    System generated unique identifier for this application, formatted as UUID4.
    update_time str
    The timestamp when the resource was most recently updated.
    createTime String
    The timestamp when the resource was created.
    effectiveAnnotations Map<String>
    effectiveLabels Map<String>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    id String
    The provider-assigned unique ID for this managed resource.
    monitoringEndpoint String
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name String
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    outputUri String
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    pulumiLabels Map<String>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    reconciling Boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    state String
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage String
    A message explaining the current state.
    uid String
    System generated unique identifier for this application, formatted as UUID4.
    updateTime String
    The timestamp when the resource was most recently updated.

    Look up Existing GdcSparkApplication Resource

    Get an existing GdcSparkApplication resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

    public static get(name: string, id: Input<ID>, state?: GdcSparkApplicationState, opts?: CustomResourceOptions): GdcSparkApplication
    @staticmethod
    def get(resource_name: str,
            id: str,
            opts: Optional[ResourceOptions] = None,
            annotations: Optional[Mapping[str, str]] = None,
            application_environment: Optional[str] = None,
            create_time: Optional[str] = None,
            dependency_images: Optional[Sequence[str]] = None,
            display_name: Optional[str] = None,
            effective_annotations: Optional[Mapping[str, str]] = None,
            effective_labels: Optional[Mapping[str, str]] = None,
            labels: Optional[Mapping[str, str]] = None,
            location: Optional[str] = None,
            monitoring_endpoint: Optional[str] = None,
            name: Optional[str] = None,
            namespace: Optional[str] = None,
            output_uri: Optional[str] = None,
            project: Optional[str] = None,
            properties: Optional[Mapping[str, str]] = None,
            pulumi_labels: Optional[Mapping[str, str]] = None,
            pyspark_application_config: Optional[GdcSparkApplicationPysparkApplicationConfigArgs] = None,
            reconciling: Optional[bool] = None,
            serviceinstance: Optional[str] = None,
            spark_application_config: Optional[GdcSparkApplicationSparkApplicationConfigArgs] = None,
            spark_application_id: Optional[str] = None,
            spark_r_application_config: Optional[GdcSparkApplicationSparkRApplicationConfigArgs] = None,
            spark_sql_application_config: Optional[GdcSparkApplicationSparkSqlApplicationConfigArgs] = None,
            state: Optional[str] = None,
            state_message: Optional[str] = None,
            uid: Optional[str] = None,
            update_time: Optional[str] = None,
            version: Optional[str] = None) -> GdcSparkApplication
    func GetGdcSparkApplication(ctx *Context, name string, id IDInput, state *GdcSparkApplicationState, opts ...ResourceOption) (*GdcSparkApplication, error)
    public static GdcSparkApplication Get(string name, Input<string> id, GdcSparkApplicationState? state, CustomResourceOptions? opts = null)
    public static GdcSparkApplication get(String name, Output<String> id, GdcSparkApplicationState state, CustomResourceOptions options)
    Resource lookup is not supported in YAML
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    resource_name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    The following state arguments are supported:
    Annotations Dictionary<string, string>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    ApplicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    CreateTime string
    The timestamp when the resource was created.
    DependencyImages List<string>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    DisplayName string
    User-provided human-readable name to be used in user interfaces.
    EffectiveAnnotations Dictionary<string, string>
    EffectiveLabels Dictionary<string, string>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    Labels Dictionary<string, string>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    Location string
    The location of the spark application.
    MonitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    Name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    Namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    OutputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    Project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    Properties Dictionary<string, string>
    application-specific properties.
    PulumiLabels Dictionary<string, string>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    PysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    Reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    Serviceinstance string
    The id of the service instance to which this spark application belongs.
    SparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    SparkApplicationId string
    The id of the application


    SparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    SparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    State string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    StateMessage string
    A message explaining the current state.
    Uid string
    System generated unique identifier for this application, formatted as UUID4.
    UpdateTime string
    The timestamp when the resource was most recently updated.
    Version string
    The Dataproc version of this application.
    Annotations map[string]string
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    ApplicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    CreateTime string
    The timestamp when the resource was created.
    DependencyImages []string
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    DisplayName string
    User-provided human-readable name to be used in user interfaces.
    EffectiveAnnotations map[string]string
    EffectiveLabels map[string]string
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    Labels map[string]string
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    Location string
    The location of the spark application.
    MonitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    Name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    Namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    OutputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    Project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    Properties map[string]string
    application-specific properties.
    PulumiLabels map[string]string
    The combination of labels configured directly on the resource and default labels configured on the provider.
    PysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfigArgs
    Represents the PySparkApplicationConfig. Structure is documented below.
    Reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    Serviceinstance string
    The id of the service instance to which this spark application belongs.
    SparkApplicationConfig GdcSparkApplicationSparkApplicationConfigArgs
    Represents the SparkApplicationConfig. Structure is documented below.
    SparkApplicationId string
    The id of the application


    SparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    SparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    State string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    StateMessage string
    A message explaining the current state.
    Uid string
    System generated unique identifier for this application, formatted as UUID4.
    UpdateTime string
    The timestamp when the resource was most recently updated.
    Version string
    The Dataproc version of this application.
    annotations Map<String,String>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment String
    An ApplicationEnvironment from which to inherit configuration properties.
    createTime String
    The timestamp when the resource was created.
    dependencyImages List<String>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName String
    User-provided human-readable name to be used in user interfaces.
    effectiveAnnotations Map<String,String>
    effectiveLabels Map<String,String>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    labels Map<String,String>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    location String
    The location of the spark application.
    monitoringEndpoint String
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name String
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    namespace String
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    outputUri String
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    project String
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Map<String,String>
    application-specific properties.
    pulumiLabels Map<String,String>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    pysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    reconciling Boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    serviceinstance String
    The id of the service instance to which this spark application belongs.
    sparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkApplicationId String
    The id of the application


    sparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    state String
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage String
    A message explaining the current state.
    uid String
    System generated unique identifier for this application, formatted as UUID4.
    updateTime String
    The timestamp when the resource was most recently updated.
    version String
    The Dataproc version of this application.
    annotations {[key: string]: string}
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment string
    An ApplicationEnvironment from which to inherit configuration properties.
    createTime string
    The timestamp when the resource was created.
    dependencyImages string[]
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName string
    User-provided human-readable name to be used in user interfaces.
    effectiveAnnotations {[key: string]: string}
    effectiveLabels {[key: string]: string}
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    labels {[key: string]: string}
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    location string
    The location of the spark application.
    monitoringEndpoint string
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name string
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    namespace string
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    outputUri string
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    project string
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties {[key: string]: string}
    application-specific properties.
    pulumiLabels {[key: string]: string}
    The combination of labels configured directly on the resource and default labels configured on the provider.
    pysparkApplicationConfig GdcSparkApplicationPysparkApplicationConfig
    Represents the PySparkApplicationConfig. Structure is documented below.
    reconciling boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    serviceinstance string
    The id of the service instance to which this spark application belongs.
    sparkApplicationConfig GdcSparkApplicationSparkApplicationConfig
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkApplicationId string
    The id of the application


    sparkRApplicationConfig GdcSparkApplicationSparkRApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig GdcSparkApplicationSparkSqlApplicationConfig
    Represents the SparkRApplicationConfig. Structure is documented below.
    state string
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage string
    A message explaining the current state.
    uid string
    System generated unique identifier for this application, formatted as UUID4.
    updateTime string
    The timestamp when the resource was most recently updated.
    version string
    The Dataproc version of this application.
    annotations Mapping[str, str]
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    application_environment str
    An ApplicationEnvironment from which to inherit configuration properties.
    create_time str
    The timestamp when the resource was created.
    dependency_images Sequence[str]
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    display_name str
    User-provided human-readable name to be used in user interfaces.
    effective_annotations Mapping[str, str]
    effective_labels Mapping[str, str]
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    labels Mapping[str, str]
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    location str
    The location of the spark application.
    monitoring_endpoint str
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name str
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    namespace str
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    output_uri str
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    project str
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Mapping[str, str]
    application-specific properties.
    pulumi_labels Mapping[str, str]
    The combination of labels configured directly on the resource and default labels configured on the provider.
    pyspark_application_config GdcSparkApplicationPysparkApplicationConfigArgs
    Represents the PySparkApplicationConfig. Structure is documented below.
    reconciling bool
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    serviceinstance str
    The id of the service instance to which this spark application belongs.
    spark_application_config GdcSparkApplicationSparkApplicationConfigArgs
    Represents the SparkApplicationConfig. Structure is documented below.
    spark_application_id str
    The id of the application


    spark_r_application_config GdcSparkApplicationSparkRApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    spark_sql_application_config GdcSparkApplicationSparkSqlApplicationConfigArgs
    Represents the SparkRApplicationConfig. Structure is documented below.
    state str
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    state_message str
    A message explaining the current state.
    uid str
    System generated unique identifier for this application, formatted as UUID4.
    update_time str
    The timestamp when the resource was most recently updated.
    version str
    The Dataproc version of this application.
    annotations Map<String>
    The annotations to associate with this application. Annotations may be used to store client information, but are not used by the server. Note: This field is non-authoritative, and will only manage the annotations present in your configuration. Please refer to the field effective_annotations for all of the annotations present on the resource.
    applicationEnvironment String
    An ApplicationEnvironment from which to inherit configuration properties.
    createTime String
    The timestamp when the resource was created.
    dependencyImages List<String>
    List of container image uris for additional file dependencies. Dependent files are sequentially copied from each image. If a file with the same name exists in 2 images then the file from later image is used.
    displayName String
    User-provided human-readable name to be used in user interfaces.
    effectiveAnnotations Map<String>
    effectiveLabels Map<String>
    All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
    labels Map<String>
    The labels to associate with this application. Labels may be used for filtering and billing tracking. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.
    location String
    The location of the spark application.
    monitoringEndpoint String
    URL for a monitoring UI for this application (for eventual Spark PHS/UI support) Out of scope for private GA
    name String
    Identifier. The name of the application. Format: projects/{project}/locations/{location}/serviceInstances/{service_instance}/sparkApplications/{application}
    namespace String
    The Kubernetes namespace in which to create the application. This namespace must already exist on the cluster.
    outputUri String
    An HCFS URI pointing to the location of stdout and stdout of the application Mainly useful for Pantheon and gcloud Not in scope for private GA
    project String
    The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
    properties Map<String>
    application-specific properties.
    pulumiLabels Map<String>
    The combination of labels configured directly on the resource and default labels configured on the provider.
    pysparkApplicationConfig Property Map
    Represents the PySparkApplicationConfig. Structure is documented below.
    reconciling Boolean
    Whether the application is currently reconciling. True if the current state of the resource does not match the intended state, and the system is working to reconcile them, whether or not the change was user initiated.
    serviceinstance String
    The id of the service instance to which this spark application belongs.
    sparkApplicationConfig Property Map
    Represents the SparkApplicationConfig. Structure is documented below.
    sparkApplicationId String
    The id of the application


    sparkRApplicationConfig Property Map
    Represents the SparkRApplicationConfig. Structure is documented below.
    sparkSqlApplicationConfig Property Map
    Represents the SparkRApplicationConfig. Structure is documented below.
    state String
    The current state. Possible values:

    • STATE_UNSPECIFIED
    • PENDING
    • RUNNING
    • CANCELLING
    • CANCELLED
    • SUCCEEDED
    • FAILED
    stateMessage String
    A message explaining the current state.
    uid String
    System generated unique identifier for this application, formatted as UUID4.
    updateTime String
    The timestamp when the resource was most recently updated.
    version String
    The Dataproc version of this application.

    Supporting Types

    GdcSparkApplicationPysparkApplicationConfig, GdcSparkApplicationPysparkApplicationConfigArgs

    MainPythonFileUri string
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    ArchiveUris List<string>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args List<string>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    FileUris List<string>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    JarFileUris List<string>
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    PythonFileUris List<string>
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.
    MainPythonFileUri string
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    ArchiveUris []string
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args []string
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    FileUris []string
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    JarFileUris []string
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    PythonFileUris []string
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.
    mainPythonFileUri String
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    jarFileUris List<String>
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    pythonFileUris List<String>
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.
    mainPythonFileUri string
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    archiveUris string[]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args string[]
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris string[]
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    jarFileUris string[]
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    pythonFileUris string[]
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.
    main_python_file_uri str
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    archive_uris Sequence[str]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args Sequence[str]
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    file_uris Sequence[str]
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    jar_file_uris Sequence[str]
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    python_file_uris Sequence[str]
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.
    mainPythonFileUri String
    The HCFS URI of the main Python file to use as the driver. Must be a .py file.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    jarFileUris List<String>
    HCFS URIs of jar files to add to the CLASSPATHs of the Python driver and tasks.
    pythonFileUris List<String>
    HCFS file URIs of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip.

    GdcSparkApplicationSparkApplicationConfig, GdcSparkApplicationSparkApplicationConfigArgs

    ArchiveUris List<string>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args List<string>
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    FileUris List<string>
    HCFS URIs of files to be placed in the working directory of each executor.
    JarFileUris List<string>
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    MainClass string
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    MainJarFileUri string
    The HCFS URI of the jar file that contains the main class.
    ArchiveUris []string
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args []string
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    FileUris []string
    HCFS URIs of files to be placed in the working directory of each executor.
    JarFileUris []string
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    MainClass string
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    MainJarFileUri string
    The HCFS URI of the jar file that contains the main class.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor.
    jarFileUris List<String>
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    mainClass String
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    mainJarFileUri String
    The HCFS URI of the jar file that contains the main class.
    archiveUris string[]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args string[]
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    fileUris string[]
    HCFS URIs of files to be placed in the working directory of each executor.
    jarFileUris string[]
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    mainClass string
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    mainJarFileUri string
    The HCFS URI of the jar file that contains the main class.
    archive_uris Sequence[str]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args Sequence[str]
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    file_uris Sequence[str]
    HCFS URIs of files to be placed in the working directory of each executor.
    jar_file_uris Sequence[str]
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    main_class str
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    main_jar_file_uri str
    The HCFS URI of the jar file that contains the main class.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments that can be set as application properties, such as --conf, since a collision can occur that causes an incorrect application submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor.
    jarFileUris List<String>
    HCFS URIs of jar files to add to the classpath of the Spark driver and tasks.
    mainClass String
    The name of the driver main class. The jar file that contains the class must be in the classpath or specified in jar_file_uris.
    mainJarFileUri String
    The HCFS URI of the jar file that contains the main class.

    GdcSparkApplicationSparkRApplicationConfig, GdcSparkApplicationSparkRApplicationConfigArgs

    MainRFileUri string
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    ArchiveUris List<string>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args List<string>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    FileUris List<string>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    MainRFileUri string
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    ArchiveUris []string
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    Args []string
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    FileUris []string
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    mainRFileUri String
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    mainRFileUri string
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    archiveUris string[]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args string[]
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris string[]
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    main_r_file_uri str
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    archive_uris Sequence[str]
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args Sequence[str]
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    file_uris Sequence[str]
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.
    mainRFileUri String
    The HCFS URI of the main R file to use as the driver. Must be a .R file.
    archiveUris List<String>
    HCFS URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
    args List<String>
    The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission.
    fileUris List<String>
    HCFS URIs of files to be placed in the working directory of each executor. Useful for naively parallel tasks.

    GdcSparkApplicationSparkSqlApplicationConfig, GdcSparkApplicationSparkSqlApplicationConfigArgs

    JarFileUris List<string>
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    QueryFileUri string
    The HCFS URI of the script that contains SQL queries.
    QueryList GdcSparkApplicationSparkSqlApplicationConfigQueryList
    Represents a list of queries. Structure is documented below.
    ScriptVariables Dictionary<string, string>
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).
    JarFileUris []string
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    QueryFileUri string
    The HCFS URI of the script that contains SQL queries.
    QueryList GdcSparkApplicationSparkSqlApplicationConfigQueryList
    Represents a list of queries. Structure is documented below.
    ScriptVariables map[string]string
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).
    jarFileUris List<String>
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    queryFileUri String
    The HCFS URI of the script that contains SQL queries.
    queryList GdcSparkApplicationSparkSqlApplicationConfigQueryList
    Represents a list of queries. Structure is documented below.
    scriptVariables Map<String,String>
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).
    jarFileUris string[]
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    queryFileUri string
    The HCFS URI of the script that contains SQL queries.
    queryList GdcSparkApplicationSparkSqlApplicationConfigQueryList
    Represents a list of queries. Structure is documented below.
    scriptVariables {[key: string]: string}
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).
    jar_file_uris Sequence[str]
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    query_file_uri str
    The HCFS URI of the script that contains SQL queries.
    query_list GdcSparkApplicationSparkSqlApplicationConfigQueryList
    Represents a list of queries. Structure is documented below.
    script_variables Mapping[str, str]
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).
    jarFileUris List<String>
    HCFS URIs of jar files to be added to the Spark CLASSPATH.
    queryFileUri String
    The HCFS URI of the script that contains SQL queries.
    queryList Property Map
    Represents a list of queries. Structure is documented below.
    scriptVariables Map<String>
    Mapping of query variable names to values (equivalent to the Spark SQL command: SET name="value";).

    GdcSparkApplicationSparkSqlApplicationConfigQueryList, GdcSparkApplicationSparkSqlApplicationConfigQueryListArgs

    Queries List<string>
    The queries to run.
    Queries []string
    The queries to run.
    queries List<String>
    The queries to run.
    queries string[]
    The queries to run.
    queries Sequence[str]
    The queries to run.
    queries List<String>
    The queries to run.

    Import

    SparkApplication can be imported using any of these accepted formats:

    • projects/{{project}}/locations/{{location}}/serviceInstances/{{serviceinstance}}/sparkApplications/{{spark_application_id}}

    • {{project}}/{{location}}/{{serviceinstance}}/{{spark_application_id}}

    • {{location}}/{{serviceinstance}}/{{spark_application_id}}

    When using the pulumi import command, SparkApplication can be imported using one of the formats above. For example:

    $ pulumi import gcp:dataproc/gdcSparkApplication:GdcSparkApplication default projects/{{project}}/locations/{{location}}/serviceInstances/{{serviceinstance}}/sparkApplications/{{spark_application_id}}
    
    $ pulumi import gcp:dataproc/gdcSparkApplication:GdcSparkApplication default {{project}}/{{location}}/{{serviceinstance}}/{{spark_application_id}}
    
    $ pulumi import gcp:dataproc/gdcSparkApplication:GdcSparkApplication default {{location}}/{{serviceinstance}}/{{spark_application_id}}
    

    To learn more about importing existing cloud resources, see Importing resources.

    Package Details

    Repository
    Google Cloud (GCP) Classic pulumi/pulumi-gcp
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the google-beta Terraform Provider.
    gcp logo
    Google Cloud Classic v8.10.0 published on Wednesday, Nov 20, 2024 by Pulumi