gcp.diagflow.CxGenerator
Explore with Pulumi AI
Generators contain prompt to be sent to the LLM model to generate text. The prompt can contain parameters which will be resolved before calling the model. It can optionally contain banned phrases to ensure the model responses are safe.
To get more information about Generator, see:
- API documentation
- How-to Guides
Example Usage
Dialogflowcx Generator Basic
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const agent = new gcp.diagflow.CxAgent("agent", {
displayName: "dialogflowcx-agent-fucntion",
location: "global",
defaultLanguageCode: "en",
supportedLanguageCodes: [
"fr",
"de",
"es",
],
timeZone: "America/New_York",
description: "Example description.",
});
const generator = new gcp.diagflow.CxGenerator("generator", {
parent: agent.id,
languageCode: "fr",
displayName: "TF Prompt generator",
llmModelSettings: {
model: "gemini-2.0-flash-001",
promptText: "Return me some great results",
},
promptText: {
text: "Send me great results in french",
},
modelParameter: {
temperature: 0.55,
},
});
import pulumi
import pulumi_gcp as gcp
agent = gcp.diagflow.CxAgent("agent",
display_name="dialogflowcx-agent-fucntion",
location="global",
default_language_code="en",
supported_language_codes=[
"fr",
"de",
"es",
],
time_zone="America/New_York",
description="Example description.")
generator = gcp.diagflow.CxGenerator("generator",
parent=agent.id,
language_code="fr",
display_name="TF Prompt generator",
llm_model_settings={
"model": "gemini-2.0-flash-001",
"prompt_text": "Return me some great results",
},
prompt_text={
"text": "Send me great results in french",
},
model_parameter={
"temperature": 0.55,
})
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/diagflow"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
agent, err := diagflow.NewCxAgent(ctx, "agent", &diagflow.CxAgentArgs{
DisplayName: pulumi.String("dialogflowcx-agent-fucntion"),
Location: pulumi.String("global"),
DefaultLanguageCode: pulumi.String("en"),
SupportedLanguageCodes: pulumi.StringArray{
pulumi.String("fr"),
pulumi.String("de"),
pulumi.String("es"),
},
TimeZone: pulumi.String("America/New_York"),
Description: pulumi.String("Example description."),
})
if err != nil {
return err
}
_, err = diagflow.NewCxGenerator(ctx, "generator", &diagflow.CxGeneratorArgs{
Parent: agent.ID(),
LanguageCode: pulumi.String("fr"),
DisplayName: pulumi.String("TF Prompt generator"),
LlmModelSettings: &diagflow.CxGeneratorLlmModelSettingsArgs{
Model: pulumi.String("gemini-2.0-flash-001"),
PromptText: pulumi.String("Return me some great results"),
},
PromptText: &diagflow.CxGeneratorPromptTextArgs{
Text: pulumi.String("Send me great results in french"),
},
ModelParameter: &diagflow.CxGeneratorModelParameterArgs{
Temperature: pulumi.Float64(0.55),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var agent = new Gcp.Diagflow.CxAgent("agent", new()
{
DisplayName = "dialogflowcx-agent-fucntion",
Location = "global",
DefaultLanguageCode = "en",
SupportedLanguageCodes = new[]
{
"fr",
"de",
"es",
},
TimeZone = "America/New_York",
Description = "Example description.",
});
var generator = new Gcp.Diagflow.CxGenerator("generator", new()
{
Parent = agent.Id,
LanguageCode = "fr",
DisplayName = "TF Prompt generator",
LlmModelSettings = new Gcp.Diagflow.Inputs.CxGeneratorLlmModelSettingsArgs
{
Model = "gemini-2.0-flash-001",
PromptText = "Return me some great results",
},
PromptText = new Gcp.Diagflow.Inputs.CxGeneratorPromptTextArgs
{
Text = "Send me great results in french",
},
ModelParameter = new Gcp.Diagflow.Inputs.CxGeneratorModelParameterArgs
{
Temperature = 0.55,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.diagflow.CxAgent;
import com.pulumi.gcp.diagflow.CxAgentArgs;
import com.pulumi.gcp.diagflow.CxGenerator;
import com.pulumi.gcp.diagflow.CxGeneratorArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorLlmModelSettingsArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorPromptTextArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorModelParameterArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var agent = new CxAgent("agent", CxAgentArgs.builder()
.displayName("dialogflowcx-agent-fucntion")
.location("global")
.defaultLanguageCode("en")
.supportedLanguageCodes(
"fr",
"de",
"es")
.timeZone("America/New_York")
.description("Example description.")
.build());
var generator = new CxGenerator("generator", CxGeneratorArgs.builder()
.parent(agent.id())
.languageCode("fr")
.displayName("TF Prompt generator")
.llmModelSettings(CxGeneratorLlmModelSettingsArgs.builder()
.model("gemini-2.0-flash-001")
.promptText("Return me some great results")
.build())
.promptText(CxGeneratorPromptTextArgs.builder()
.text("Send me great results in french")
.build())
.modelParameter(CxGeneratorModelParameterArgs.builder()
.temperature(0.55)
.build())
.build());
}
}
resources:
agent:
type: gcp:diagflow:CxAgent
properties:
displayName: dialogflowcx-agent-fucntion
location: global
defaultLanguageCode: en
supportedLanguageCodes:
- fr
- de
- es
timeZone: America/New_York
description: Example description.
generator:
type: gcp:diagflow:CxGenerator
properties:
parent: ${agent.id}
languageCode: fr
displayName: TF Prompt generator
llmModelSettings:
model: gemini-2.0-flash-001
promptText: Return me some great results
promptText:
text: Send me great results in french
modelParameter:
temperature: 0.55
Create CxGenerator Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new CxGenerator(name: string, args: CxGeneratorArgs, opts?: CustomResourceOptions);
@overload
def CxGenerator(resource_name: str,
args: CxGeneratorArgs,
opts: Optional[ResourceOptions] = None)
@overload
def CxGenerator(resource_name: str,
opts: Optional[ResourceOptions] = None,
display_name: Optional[str] = None,
prompt_text: Optional[CxGeneratorPromptTextArgs] = None,
language_code: Optional[str] = None,
llm_model_settings: Optional[CxGeneratorLlmModelSettingsArgs] = None,
model_parameter: Optional[CxGeneratorModelParameterArgs] = None,
parent: Optional[str] = None,
placeholders: Optional[Sequence[CxGeneratorPlaceholderArgs]] = None)
func NewCxGenerator(ctx *Context, name string, args CxGeneratorArgs, opts ...ResourceOption) (*CxGenerator, error)
public CxGenerator(string name, CxGeneratorArgs args, CustomResourceOptions? opts = null)
public CxGenerator(String name, CxGeneratorArgs args)
public CxGenerator(String name, CxGeneratorArgs args, CustomResourceOptions options)
type: gcp:diagflow:CxGenerator
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args CxGeneratorArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args CxGeneratorArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args CxGeneratorArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args CxGeneratorArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args CxGeneratorArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var cxGeneratorResource = new Gcp.Diagflow.CxGenerator("cxGeneratorResource", new()
{
DisplayName = "string",
PromptText = new Gcp.Diagflow.Inputs.CxGeneratorPromptTextArgs
{
Text = "string",
},
LanguageCode = "string",
LlmModelSettings = new Gcp.Diagflow.Inputs.CxGeneratorLlmModelSettingsArgs
{
Model = "string",
PromptText = "string",
},
ModelParameter = new Gcp.Diagflow.Inputs.CxGeneratorModelParameterArgs
{
MaxDecodeSteps = 0,
Temperature = 0,
TopK = 0,
TopP = 0,
},
Parent = "string",
Placeholders = new[]
{
new Gcp.Diagflow.Inputs.CxGeneratorPlaceholderArgs
{
Id = "string",
Name = "string",
},
},
});
example, err := diagflow.NewCxGenerator(ctx, "cxGeneratorResource", &diagflow.CxGeneratorArgs{
DisplayName: pulumi.String("string"),
PromptText: &diagflow.CxGeneratorPromptTextArgs{
Text: pulumi.String("string"),
},
LanguageCode: pulumi.String("string"),
LlmModelSettings: &diagflow.CxGeneratorLlmModelSettingsArgs{
Model: pulumi.String("string"),
PromptText: pulumi.String("string"),
},
ModelParameter: &diagflow.CxGeneratorModelParameterArgs{
MaxDecodeSteps: pulumi.Int(0),
Temperature: pulumi.Float64(0),
TopK: pulumi.Int(0),
TopP: pulumi.Float64(0),
},
Parent: pulumi.String("string"),
Placeholders: diagflow.CxGeneratorPlaceholderArray{
&diagflow.CxGeneratorPlaceholderArgs{
Id: pulumi.String("string"),
Name: pulumi.String("string"),
},
},
})
var cxGeneratorResource = new CxGenerator("cxGeneratorResource", CxGeneratorArgs.builder()
.displayName("string")
.promptText(CxGeneratorPromptTextArgs.builder()
.text("string")
.build())
.languageCode("string")
.llmModelSettings(CxGeneratorLlmModelSettingsArgs.builder()
.model("string")
.promptText("string")
.build())
.modelParameter(CxGeneratorModelParameterArgs.builder()
.maxDecodeSteps(0)
.temperature(0.0)
.topK(0)
.topP(0.0)
.build())
.parent("string")
.placeholders(CxGeneratorPlaceholderArgs.builder()
.id("string")
.name("string")
.build())
.build());
cx_generator_resource = gcp.diagflow.CxGenerator("cxGeneratorResource",
display_name="string",
prompt_text={
"text": "string",
},
language_code="string",
llm_model_settings={
"model": "string",
"prompt_text": "string",
},
model_parameter={
"max_decode_steps": 0,
"temperature": 0,
"top_k": 0,
"top_p": 0,
},
parent="string",
placeholders=[{
"id": "string",
"name": "string",
}])
const cxGeneratorResource = new gcp.diagflow.CxGenerator("cxGeneratorResource", {
displayName: "string",
promptText: {
text: "string",
},
languageCode: "string",
llmModelSettings: {
model: "string",
promptText: "string",
},
modelParameter: {
maxDecodeSteps: 0,
temperature: 0,
topK: 0,
topP: 0,
},
parent: "string",
placeholders: [{
id: "string",
name: "string",
}],
});
type: gcp:diagflow:CxGenerator
properties:
displayName: string
languageCode: string
llmModelSettings:
model: string
promptText: string
modelParameter:
maxDecodeSteps: 0
temperature: 0
topK: 0
topP: 0
parent: string
placeholders:
- id: string
name: string
promptText:
text: string
CxGenerator Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The CxGenerator resource accepts the following input properties:
- Display
Name string - The human-readable name of the generator, unique within the agent.
- Prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- Language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- Llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- Model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- Parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- Placeholders
List<Cx
Generator Placeholder> - List of custom placeholders in the prompt text. Structure is documented below.
- Display
Name string - The human-readable name of the generator, unique within the agent.
- Prompt
Text CxGenerator Prompt Text Args - Prompt for the LLM model. Structure is documented below.
- Language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- Llm
Model CxSettings Generator Llm Model Settings Args - The LLM model settings. Structure is documented below.
- Model
Parameter CxGenerator Model Parameter Args - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- Parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- Placeholders
[]Cx
Generator Placeholder Args - List of custom placeholders in the prompt text. Structure is documented below.
- display
Name String - The human-readable name of the generator, unique within the agent.
- prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- language
Code String - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- parent String
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
List<Cx
Generator Placeholder> - List of custom placeholders in the prompt text. Structure is documented below.
- display
Name string - The human-readable name of the generator, unique within the agent.
- prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
Cx
Generator Placeholder[] - List of custom placeholders in the prompt text. Structure is documented below.
- display_
name str - The human-readable name of the generator, unique within the agent.
- prompt_
text CxGenerator Prompt Text Args - Prompt for the LLM model. Structure is documented below.
- language_
code str - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm_
model_ Cxsettings Generator Llm Model Settings Args - The LLM model settings. Structure is documented below.
- model_
parameter CxGenerator Model Parameter Args - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- parent str
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
Sequence[Cx
Generator Placeholder Args] - List of custom placeholders in the prompt text. Structure is documented below.
- display
Name String - The human-readable name of the generator, unique within the agent.
- prompt
Text Property Map - Prompt for the LLM model. Structure is documented below.
- language
Code String - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model Property MapSettings - The LLM model settings. Structure is documented below.
- model
Parameter Property Map - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- parent String
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders List<Property Map>
- List of custom placeholders in the prompt text. Structure is documented below.
Outputs
All input properties are implicitly available as output properties. Additionally, the CxGenerator resource produces the following output properties:
Look up Existing CxGenerator Resource
Get an existing CxGenerator resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: CxGeneratorState, opts?: CustomResourceOptions): CxGenerator
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
display_name: Optional[str] = None,
language_code: Optional[str] = None,
llm_model_settings: Optional[CxGeneratorLlmModelSettingsArgs] = None,
model_parameter: Optional[CxGeneratorModelParameterArgs] = None,
name: Optional[str] = None,
parent: Optional[str] = None,
placeholders: Optional[Sequence[CxGeneratorPlaceholderArgs]] = None,
prompt_text: Optional[CxGeneratorPromptTextArgs] = None) -> CxGenerator
func GetCxGenerator(ctx *Context, name string, id IDInput, state *CxGeneratorState, opts ...ResourceOption) (*CxGenerator, error)
public static CxGenerator Get(string name, Input<string> id, CxGeneratorState? state, CustomResourceOptions? opts = null)
public static CxGenerator get(String name, Output<String> id, CxGeneratorState state, CustomResourceOptions options)
resources: _: type: gcp:diagflow:CxGenerator get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Display
Name string - The human-readable name of the generator, unique within the agent.
- Language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- Llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- Model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- Name string
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- Parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- Placeholders
List<Cx
Generator Placeholder> - List of custom placeholders in the prompt text. Structure is documented below.
- Prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- Display
Name string - The human-readable name of the generator, unique within the agent.
- Language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- Llm
Model CxSettings Generator Llm Model Settings Args - The LLM model settings. Structure is documented below.
- Model
Parameter CxGenerator Model Parameter Args - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- Name string
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- Parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- Placeholders
[]Cx
Generator Placeholder Args - List of custom placeholders in the prompt text. Structure is documented below.
- Prompt
Text CxGenerator Prompt Text Args - Prompt for the LLM model. Structure is documented below.
- display
Name String - The human-readable name of the generator, unique within the agent.
- language
Code String - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- name String
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- parent String
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
List<Cx
Generator Placeholder> - List of custom placeholders in the prompt text. Structure is documented below.
- prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- display
Name string - The human-readable name of the generator, unique within the agent.
- language
Code string - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model CxSettings Generator Llm Model Settings - The LLM model settings. Structure is documented below.
- model
Parameter CxGenerator Model Parameter - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- name string
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- parent string
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
Cx
Generator Placeholder[] - List of custom placeholders in the prompt text. Structure is documented below.
- prompt
Text CxGenerator Prompt Text - Prompt for the LLM model. Structure is documented below.
- display_
name str - The human-readable name of the generator, unique within the agent.
- language_
code str - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm_
model_ Cxsettings Generator Llm Model Settings Args - The LLM model settings. Structure is documented below.
- model_
parameter CxGenerator Model Parameter Args - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- name str
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- parent str
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders
Sequence[Cx
Generator Placeholder Args] - List of custom placeholders in the prompt text. Structure is documented below.
- prompt_
text CxGenerator Prompt Text Args - Prompt for the LLM model. Structure is documented below.
- display
Name String - The human-readable name of the generator, unique within the agent.
- language
Code String - The language to create generators for the following fields:
- Generator.prompt_text.text If not specified, the agent's default language is used.
- llm
Model Property MapSettings - The LLM model settings. Structure is documented below.
- model
Parameter Property Map - Parameters passed to the LLM to configure its behavior. Structure is documented below.
- name String
- The unique identifier of the Generator. Format: projects//locations//agents//generators/.
- parent String
- The agent to create a Generator for. Format: projects//locations//agents/.
- placeholders List<Property Map>
- List of custom placeholders in the prompt text. Structure is documented below.
- prompt
Text Property Map - Prompt for the LLM model. Structure is documented below.
Supporting Types
CxGeneratorLlmModelSettings, CxGeneratorLlmModelSettingsArgs
- Model string
- The selected LLM model.
- Prompt
Text string - The custom prompt to use.
- Model string
- The selected LLM model.
- Prompt
Text string - The custom prompt to use.
- model String
- The selected LLM model.
- prompt
Text String - The custom prompt to use.
- model string
- The selected LLM model.
- prompt
Text string - The custom prompt to use.
- model str
- The selected LLM model.
- prompt_
text str - The custom prompt to use.
- model String
- The selected LLM model.
- prompt
Text String - The custom prompt to use.
CxGeneratorModelParameter, CxGeneratorModelParameterArgs
- Max
Decode intSteps - The maximum number of tokens to generate.
- Temperature double
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- Top
K int - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- Top
P double - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
- Max
Decode intSteps - The maximum number of tokens to generate.
- Temperature float64
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- Top
K int - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- Top
P float64 - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
- max
Decode IntegerSteps - The maximum number of tokens to generate.
- temperature Double
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- top
K Integer - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- top
P Double - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
- max
Decode numberSteps - The maximum number of tokens to generate.
- temperature number
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- top
K number - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- top
P number - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
- max_
decode_ intsteps - The maximum number of tokens to generate.
- temperature float
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- top_
k int - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- top_
p float - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
- max
Decode NumberSteps - The maximum number of tokens to generate.
- temperature Number
- The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
- top
K Number - If set, the sampling process in each step is limited to the topK tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
- top
P Number - If set, only the tokens comprising the top topP probability mass are considered. If both topP and topK are set, topP will be used for further refining candidates selected with topK. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
CxGeneratorPlaceholder, CxGeneratorPlaceholderArgs
CxGeneratorPromptText, CxGeneratorPromptTextArgs
- Text string
- Text input which can be used for prompt or banned phrases.
- Text string
- Text input which can be used for prompt or banned phrases.
- text String
- Text input which can be used for prompt or banned phrases.
- text string
- Text input which can be used for prompt or banned phrases.
- text str
- Text input which can be used for prompt or banned phrases.
- text String
- Text input which can be used for prompt or banned phrases.
Import
Generator can be imported using any of these accepted formats:
{{parent}}/generators/{{name}}
{{parent}}/{{name}}
When using the pulumi import
command, Generator can be imported using one of the formats above. For example:
$ pulumi import gcp:diagflow/cxGenerator:CxGenerator default {{parent}}/generators/{{name}}
$ pulumi import gcp:diagflow/cxGenerator:CxGenerator default {{parent}}/{{name}}
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- Google Cloud (GCP) Classic pulumi/pulumi-gcp
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
google-beta
Terraform Provider.