gcp.diagflow.CxPlaybook
Explore with Pulumi AI
Playbook is the basic building block to instruct the LLM how to execute a certain task.
To get more information about Playbook, see:
- API documentation
- How-to Guides
Example Usage
Dialogflowcx Playbook Basic
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const agent = new gcp.diagflow.CxAgent("agent", {
displayName: "dialogflowcx-agent-basic",
location: "global",
defaultLanguageCode: "en",
timeZone: "America/New_York",
description: "Example description.",
});
const my_playbook = new gcp.diagflow.CxPlaybook("my-playbook", {
parent: agent.id,
displayName: "Example Display Name",
goal: "Example Goal",
playbookType: "ROUTINE",
instruction: {
steps: [
{
text: "step 1",
steps: JSON.stringify([
{
text: "step 1 1",
},
{
text: "step 1 2",
steps: [
{
text: "step 1 2 1",
},
{
text: "step 1 2 2",
},
],
},
{
text: "step 1 3",
},
]),
},
{
text: "step 2",
},
{
text: "step 3",
},
],
},
});
import pulumi
import json
import pulumi_gcp as gcp
agent = gcp.diagflow.CxAgent("agent",
display_name="dialogflowcx-agent-basic",
location="global",
default_language_code="en",
time_zone="America/New_York",
description="Example description.")
my_playbook = gcp.diagflow.CxPlaybook("my-playbook",
parent=agent.id,
display_name="Example Display Name",
goal="Example Goal",
playbook_type="ROUTINE",
instruction={
"steps": [
{
"text": "step 1",
"steps": json.dumps([
{
"text": "step 1 1",
},
{
"text": "step 1 2",
"steps": [
{
"text": "step 1 2 1",
},
{
"text": "step 1 2 2",
},
],
},
{
"text": "step 1 3",
},
]),
},
{
"text": "step 2",
},
{
"text": "step 3",
},
],
})
package main
import (
"encoding/json"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/diagflow"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
agent, err := diagflow.NewCxAgent(ctx, "agent", &diagflow.CxAgentArgs{
DisplayName: pulumi.String("dialogflowcx-agent-basic"),
Location: pulumi.String("global"),
DefaultLanguageCode: pulumi.String("en"),
TimeZone: pulumi.String("America/New_York"),
Description: pulumi.String("Example description."),
})
if err != nil {
return err
}
tmpJSON0, err := json.Marshal([]map[string]interface{}{
map[string]interface{}{
"text": "step 1 1",
},
map[string]interface{}{
"text": "step 1 2",
"steps": []map[string]interface{}{
map[string]interface{}{
"text": "step 1 2 1",
},
map[string]interface{}{
"text": "step 1 2 2",
},
},
},
map[string]interface{}{
"text": "step 1 3",
},
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
_, err = diagflow.NewCxPlaybook(ctx, "my-playbook", &diagflow.CxPlaybookArgs{
Parent: agent.ID(),
DisplayName: pulumi.String("Example Display Name"),
Goal: pulumi.String("Example Goal"),
PlaybookType: pulumi.String("ROUTINE"),
Instruction: &diagflow.CxPlaybookInstructionArgs{
Steps: diagflow.CxPlaybookInstructionStepArray{
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 1"),
Steps: pulumi.String(json0),
},
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 2"),
},
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 3"),
},
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var agent = new Gcp.Diagflow.CxAgent("agent", new()
{
DisplayName = "dialogflowcx-agent-basic",
Location = "global",
DefaultLanguageCode = "en",
TimeZone = "America/New_York",
Description = "Example description.",
});
var my_playbook = new Gcp.Diagflow.CxPlaybook("my-playbook", new()
{
Parent = agent.Id,
DisplayName = "Example Display Name",
Goal = "Example Goal",
PlaybookType = "ROUTINE",
Instruction = new Gcp.Diagflow.Inputs.CxPlaybookInstructionArgs
{
Steps = new[]
{
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 1",
Steps = JsonSerializer.Serialize(new[]
{
new Dictionary<string, object?>
{
["text"] = "step 1 1",
},
new Dictionary<string, object?>
{
["text"] = "step 1 2",
["steps"] = new[]
{
new Dictionary<string, object?>
{
["text"] = "step 1 2 1",
},
new Dictionary<string, object?>
{
["text"] = "step 1 2 2",
},
},
},
new Dictionary<string, object?>
{
["text"] = "step 1 3",
},
}),
},
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 2",
},
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 3",
},
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.diagflow.CxAgent;
import com.pulumi.gcp.diagflow.CxAgentArgs;
import com.pulumi.gcp.diagflow.CxPlaybook;
import com.pulumi.gcp.diagflow.CxPlaybookArgs;
import com.pulumi.gcp.diagflow.inputs.CxPlaybookInstructionArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var agent = new CxAgent("agent", CxAgentArgs.builder()
.displayName("dialogflowcx-agent-basic")
.location("global")
.defaultLanguageCode("en")
.timeZone("America/New_York")
.description("Example description.")
.build());
var my_playbook = new CxPlaybook("my-playbook", CxPlaybookArgs.builder()
.parent(agent.id())
.displayName("Example Display Name")
.goal("Example Goal")
.playbookType("ROUTINE")
.instruction(CxPlaybookInstructionArgs.builder()
.steps(
CxPlaybookInstructionStepArgs.builder()
.text("step 1")
.steps(serializeJson(
jsonArray(
jsonObject(
jsonProperty("text", "step 1 1")
),
jsonObject(
jsonProperty("text", "step 1 2"),
jsonProperty("steps", jsonArray(
jsonObject(
jsonProperty("text", "step 1 2 1")
),
jsonObject(
jsonProperty("text", "step 1 2 2")
)
))
),
jsonObject(
jsonProperty("text", "step 1 3")
)
)))
.build(),
CxPlaybookInstructionStepArgs.builder()
.text("step 2")
.build(),
CxPlaybookInstructionStepArgs.builder()
.text("step 3")
.build())
.build())
.build());
}
}
resources:
agent:
type: gcp:diagflow:CxAgent
properties:
displayName: dialogflowcx-agent-basic
location: global
defaultLanguageCode: en
timeZone: America/New_York
description: Example description.
my-playbook:
type: gcp:diagflow:CxPlaybook
properties:
parent: ${agent.id}
displayName: Example Display Name
goal: Example Goal
playbookType: ROUTINE
instruction:
steps:
- text: step 1
steps:
fn::toJSON:
- text: step 1 1
- text: step 1 2
steps:
- text: step 1 2 1
- text: step 1 2 2
- text: step 1 3
- text: step 2
- text: step 3
Dialogflowcx Playbook Fulfillment
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const agent = new gcp.diagflow.CxAgent("agent", {
displayName: "dialogflowcx-agent",
location: "global",
defaultLanguageCode: "en",
timeZone: "America/New_York",
description: "Example description.",
});
const bucket = new gcp.storage.Bucket("bucket", {
name: "dialogflowcx-bucket",
location: "US",
uniformBucketLevelAccess: true,
});
const myWebhook = new gcp.diagflow.CxWebhook("my_webhook", {
parent: agent.id,
displayName: "MyWebhook",
genericWebService: {
uri: "https://example.com",
},
});
const myTool = new gcp.diagflow.CxTool("my_tool", {
parent: agent.id,
displayName: "Example Tool",
description: "Example Description",
});
const myGenerator = new gcp.diagflow.CxGenerator("my_generator", {
parent: agent.id,
displayName: "TF Prompt generator",
llmModelSettings: {
model: "gemini-2.0-flash-001",
promptText: "Return me some great results",
},
promptText: {
text: "Send me great results in french",
},
modelParameter: {
temperature: 0.55,
},
});
const my_playbook = new gcp.diagflow.CxPlaybook("my-playbook", {
parent: agent.id,
displayName: "Playbook Example with Fulfillment",
goal: "Example Goal",
instruction: {
guidelines: "Example Guidelines",
steps: [
{
text: "step 1",
steps: JSON.stringify([
{
text: "step 1 1",
},
{
text: "step 1 2",
steps: [
{
text: "step 1 2 1",
},
{
text: "step 1 2 2",
},
],
},
{
text: "step 1 3",
},
]),
},
{
text: "step 2",
},
{
text: "step 3",
},
],
},
llmModelSettings: {
model: "gemini-2.0-flash-001",
promptText: "Return me some great results",
},
referencedTools: [myTool.id],
});
import pulumi
import json
import pulumi_gcp as gcp
agent = gcp.diagflow.CxAgent("agent",
display_name="dialogflowcx-agent",
location="global",
default_language_code="en",
time_zone="America/New_York",
description="Example description.")
bucket = gcp.storage.Bucket("bucket",
name="dialogflowcx-bucket",
location="US",
uniform_bucket_level_access=True)
my_webhook = gcp.diagflow.CxWebhook("my_webhook",
parent=agent.id,
display_name="MyWebhook",
generic_web_service={
"uri": "https://example.com",
})
my_tool = gcp.diagflow.CxTool("my_tool",
parent=agent.id,
display_name="Example Tool",
description="Example Description")
my_generator = gcp.diagflow.CxGenerator("my_generator",
parent=agent.id,
display_name="TF Prompt generator",
llm_model_settings={
"model": "gemini-2.0-flash-001",
"prompt_text": "Return me some great results",
},
prompt_text={
"text": "Send me great results in french",
},
model_parameter={
"temperature": 0.55,
})
my_playbook = gcp.diagflow.CxPlaybook("my-playbook",
parent=agent.id,
display_name="Playbook Example with Fulfillment",
goal="Example Goal",
instruction={
"guidelines": "Example Guidelines",
"steps": [
{
"text": "step 1",
"steps": json.dumps([
{
"text": "step 1 1",
},
{
"text": "step 1 2",
"steps": [
{
"text": "step 1 2 1",
},
{
"text": "step 1 2 2",
},
],
},
{
"text": "step 1 3",
},
]),
},
{
"text": "step 2",
},
{
"text": "step 3",
},
],
},
llm_model_settings={
"model": "gemini-2.0-flash-001",
"prompt_text": "Return me some great results",
},
referenced_tools=[my_tool.id])
package main
import (
"encoding/json"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/diagflow"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/storage"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
agent, err := diagflow.NewCxAgent(ctx, "agent", &diagflow.CxAgentArgs{
DisplayName: pulumi.String("dialogflowcx-agent"),
Location: pulumi.String("global"),
DefaultLanguageCode: pulumi.String("en"),
TimeZone: pulumi.String("America/New_York"),
Description: pulumi.String("Example description."),
})
if err != nil {
return err
}
_, err = storage.NewBucket(ctx, "bucket", &storage.BucketArgs{
Name: pulumi.String("dialogflowcx-bucket"),
Location: pulumi.String("US"),
UniformBucketLevelAccess: pulumi.Bool(true),
})
if err != nil {
return err
}
_, err = diagflow.NewCxWebhook(ctx, "my_webhook", &diagflow.CxWebhookArgs{
Parent: agent.ID(),
DisplayName: pulumi.String("MyWebhook"),
GenericWebService: &diagflow.CxWebhookGenericWebServiceArgs{
Uri: pulumi.String("https://example.com"),
},
})
if err != nil {
return err
}
myTool, err := diagflow.NewCxTool(ctx, "my_tool", &diagflow.CxToolArgs{
Parent: agent.ID(),
DisplayName: pulumi.String("Example Tool"),
Description: pulumi.String("Example Description"),
})
if err != nil {
return err
}
_, err = diagflow.NewCxGenerator(ctx, "my_generator", &diagflow.CxGeneratorArgs{
Parent: agent.ID(),
DisplayName: pulumi.String("TF Prompt generator"),
LlmModelSettings: &diagflow.CxGeneratorLlmModelSettingsArgs{
Model: pulumi.String("gemini-2.0-flash-001"),
PromptText: pulumi.String("Return me some great results"),
},
PromptText: &diagflow.CxGeneratorPromptTextArgs{
Text: pulumi.String("Send me great results in french"),
},
ModelParameter: &diagflow.CxGeneratorModelParameterArgs{
Temperature: pulumi.Float64(0.55),
},
})
if err != nil {
return err
}
tmpJSON0, err := json.Marshal([]map[string]interface{}{
map[string]interface{}{
"text": "step 1 1",
},
map[string]interface{}{
"text": "step 1 2",
"steps": []map[string]interface{}{
map[string]interface{}{
"text": "step 1 2 1",
},
map[string]interface{}{
"text": "step 1 2 2",
},
},
},
map[string]interface{}{
"text": "step 1 3",
},
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
_, err = diagflow.NewCxPlaybook(ctx, "my-playbook", &diagflow.CxPlaybookArgs{
Parent: agent.ID(),
DisplayName: pulumi.String("Playbook Example with Fulfillment"),
Goal: pulumi.String("Example Goal"),
Instruction: &diagflow.CxPlaybookInstructionArgs{
Guidelines: pulumi.String("Example Guidelines"),
Steps: diagflow.CxPlaybookInstructionStepArray{
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 1"),
Steps: pulumi.String(json0),
},
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 2"),
},
&diagflow.CxPlaybookInstructionStepArgs{
Text: pulumi.String("step 3"),
},
},
},
LlmModelSettings: &diagflow.CxPlaybookLlmModelSettingsArgs{
Model: pulumi.String("gemini-2.0-flash-001"),
PromptText: pulumi.String("Return me some great results"),
},
ReferencedTools: pulumi.StringArray{
myTool.ID(),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var agent = new Gcp.Diagflow.CxAgent("agent", new()
{
DisplayName = "dialogflowcx-agent",
Location = "global",
DefaultLanguageCode = "en",
TimeZone = "America/New_York",
Description = "Example description.",
});
var bucket = new Gcp.Storage.Bucket("bucket", new()
{
Name = "dialogflowcx-bucket",
Location = "US",
UniformBucketLevelAccess = true,
});
var myWebhook = new Gcp.Diagflow.CxWebhook("my_webhook", new()
{
Parent = agent.Id,
DisplayName = "MyWebhook",
GenericWebService = new Gcp.Diagflow.Inputs.CxWebhookGenericWebServiceArgs
{
Uri = "https://example.com",
},
});
var myTool = new Gcp.Diagflow.CxTool("my_tool", new()
{
Parent = agent.Id,
DisplayName = "Example Tool",
Description = "Example Description",
});
var myGenerator = new Gcp.Diagflow.CxGenerator("my_generator", new()
{
Parent = agent.Id,
DisplayName = "TF Prompt generator",
LlmModelSettings = new Gcp.Diagflow.Inputs.CxGeneratorLlmModelSettingsArgs
{
Model = "gemini-2.0-flash-001",
PromptText = "Return me some great results",
},
PromptText = new Gcp.Diagflow.Inputs.CxGeneratorPromptTextArgs
{
Text = "Send me great results in french",
},
ModelParameter = new Gcp.Diagflow.Inputs.CxGeneratorModelParameterArgs
{
Temperature = 0.55,
},
});
var my_playbook = new Gcp.Diagflow.CxPlaybook("my-playbook", new()
{
Parent = agent.Id,
DisplayName = "Playbook Example with Fulfillment",
Goal = "Example Goal",
Instruction = new Gcp.Diagflow.Inputs.CxPlaybookInstructionArgs
{
Guidelines = "Example Guidelines",
Steps = new[]
{
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 1",
Steps = JsonSerializer.Serialize(new[]
{
new Dictionary<string, object?>
{
["text"] = "step 1 1",
},
new Dictionary<string, object?>
{
["text"] = "step 1 2",
["steps"] = new[]
{
new Dictionary<string, object?>
{
["text"] = "step 1 2 1",
},
new Dictionary<string, object?>
{
["text"] = "step 1 2 2",
},
},
},
new Dictionary<string, object?>
{
["text"] = "step 1 3",
},
}),
},
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 2",
},
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Text = "step 3",
},
},
},
LlmModelSettings = new Gcp.Diagflow.Inputs.CxPlaybookLlmModelSettingsArgs
{
Model = "gemini-2.0-flash-001",
PromptText = "Return me some great results",
},
ReferencedTools = new[]
{
myTool.Id,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.diagflow.CxAgent;
import com.pulumi.gcp.diagflow.CxAgentArgs;
import com.pulumi.gcp.storage.Bucket;
import com.pulumi.gcp.storage.BucketArgs;
import com.pulumi.gcp.diagflow.CxWebhook;
import com.pulumi.gcp.diagflow.CxWebhookArgs;
import com.pulumi.gcp.diagflow.inputs.CxWebhookGenericWebServiceArgs;
import com.pulumi.gcp.diagflow.CxTool;
import com.pulumi.gcp.diagflow.CxToolArgs;
import com.pulumi.gcp.diagflow.CxGenerator;
import com.pulumi.gcp.diagflow.CxGeneratorArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorLlmModelSettingsArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorPromptTextArgs;
import com.pulumi.gcp.diagflow.inputs.CxGeneratorModelParameterArgs;
import com.pulumi.gcp.diagflow.CxPlaybook;
import com.pulumi.gcp.diagflow.CxPlaybookArgs;
import com.pulumi.gcp.diagflow.inputs.CxPlaybookInstructionArgs;
import com.pulumi.gcp.diagflow.inputs.CxPlaybookLlmModelSettingsArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var agent = new CxAgent("agent", CxAgentArgs.builder()
.displayName("dialogflowcx-agent")
.location("global")
.defaultLanguageCode("en")
.timeZone("America/New_York")
.description("Example description.")
.build());
var bucket = new Bucket("bucket", BucketArgs.builder()
.name("dialogflowcx-bucket")
.location("US")
.uniformBucketLevelAccess(true)
.build());
var myWebhook = new CxWebhook("myWebhook", CxWebhookArgs.builder()
.parent(agent.id())
.displayName("MyWebhook")
.genericWebService(CxWebhookGenericWebServiceArgs.builder()
.uri("https://example.com")
.build())
.build());
var myTool = new CxTool("myTool", CxToolArgs.builder()
.parent(agent.id())
.displayName("Example Tool")
.description("Example Description")
.build());
var myGenerator = new CxGenerator("myGenerator", CxGeneratorArgs.builder()
.parent(agent.id())
.displayName("TF Prompt generator")
.llmModelSettings(CxGeneratorLlmModelSettingsArgs.builder()
.model("gemini-2.0-flash-001")
.promptText("Return me some great results")
.build())
.promptText(CxGeneratorPromptTextArgs.builder()
.text("Send me great results in french")
.build())
.modelParameter(CxGeneratorModelParameterArgs.builder()
.temperature(0.55)
.build())
.build());
var my_playbook = new CxPlaybook("my-playbook", CxPlaybookArgs.builder()
.parent(agent.id())
.displayName("Playbook Example with Fulfillment")
.goal("Example Goal")
.instruction(CxPlaybookInstructionArgs.builder()
.guidelines("Example Guidelines")
.steps(
CxPlaybookInstructionStepArgs.builder()
.text("step 1")
.steps(serializeJson(
jsonArray(
jsonObject(
jsonProperty("text", "step 1 1")
),
jsonObject(
jsonProperty("text", "step 1 2"),
jsonProperty("steps", jsonArray(
jsonObject(
jsonProperty("text", "step 1 2 1")
),
jsonObject(
jsonProperty("text", "step 1 2 2")
)
))
),
jsonObject(
jsonProperty("text", "step 1 3")
)
)))
.build(),
CxPlaybookInstructionStepArgs.builder()
.text("step 2")
.build(),
CxPlaybookInstructionStepArgs.builder()
.text("step 3")
.build())
.build())
.llmModelSettings(CxPlaybookLlmModelSettingsArgs.builder()
.model("gemini-2.0-flash-001")
.promptText("Return me some great results")
.build())
.referencedTools(myTool.id())
.build());
}
}
resources:
agent:
type: gcp:diagflow:CxAgent
properties:
displayName: dialogflowcx-agent
location: global
defaultLanguageCode: en
timeZone: America/New_York
description: Example description.
bucket:
type: gcp:storage:Bucket
properties:
name: dialogflowcx-bucket
location: US
uniformBucketLevelAccess: true
myWebhook:
type: gcp:diagflow:CxWebhook
name: my_webhook
properties:
parent: ${agent.id}
displayName: MyWebhook
genericWebService:
uri: https://example.com
myTool:
type: gcp:diagflow:CxTool
name: my_tool
properties:
parent: ${agent.id}
displayName: Example Tool
description: Example Description
myGenerator:
type: gcp:diagflow:CxGenerator
name: my_generator
properties:
parent: ${agent.id}
displayName: TF Prompt generator
llmModelSettings:
model: gemini-2.0-flash-001
promptText: Return me some great results
promptText:
text: Send me great results in french
modelParameter:
temperature: 0.55
my-playbook:
type: gcp:diagflow:CxPlaybook
properties:
parent: ${agent.id}
displayName: Playbook Example with Fulfillment
goal: Example Goal
instruction:
guidelines: Example Guidelines
steps:
- text: step 1
steps:
fn::toJSON:
- text: step 1 1
- text: step 1 2
steps:
- text: step 1 2 1
- text: step 1 2 2
- text: step 1 3
- text: step 2
- text: step 3
llmModelSettings:
model: gemini-2.0-flash-001
promptText: Return me some great results
referencedTools:
- ${myTool.id}
Create CxPlaybook Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new CxPlaybook(name: string, args: CxPlaybookArgs, opts?: CustomResourceOptions);
@overload
def CxPlaybook(resource_name: str,
args: CxPlaybookArgs,
opts: Optional[ResourceOptions] = None)
@overload
def CxPlaybook(resource_name: str,
opts: Optional[ResourceOptions] = None,
display_name: Optional[str] = None,
goal: Optional[str] = None,
instruction: Optional[CxPlaybookInstructionArgs] = None,
llm_model_settings: Optional[CxPlaybookLlmModelSettingsArgs] = None,
parent: Optional[str] = None,
playbook_type: Optional[str] = None,
referenced_tools: Optional[Sequence[str]] = None)
func NewCxPlaybook(ctx *Context, name string, args CxPlaybookArgs, opts ...ResourceOption) (*CxPlaybook, error)
public CxPlaybook(string name, CxPlaybookArgs args, CustomResourceOptions? opts = null)
public CxPlaybook(String name, CxPlaybookArgs args)
public CxPlaybook(String name, CxPlaybookArgs args, CustomResourceOptions options)
type: gcp:diagflow:CxPlaybook
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args CxPlaybookArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args CxPlaybookArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args CxPlaybookArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args CxPlaybookArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args CxPlaybookArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var cxPlaybookResource = new Gcp.Diagflow.CxPlaybook("cxPlaybookResource", new()
{
DisplayName = "string",
Goal = "string",
Instruction = new Gcp.Diagflow.Inputs.CxPlaybookInstructionArgs
{
Guidelines = "string",
Steps = new[]
{
new Gcp.Diagflow.Inputs.CxPlaybookInstructionStepArgs
{
Steps = "string",
Text = "string",
},
},
},
LlmModelSettings = new Gcp.Diagflow.Inputs.CxPlaybookLlmModelSettingsArgs
{
Model = "string",
PromptText = "string",
},
Parent = "string",
PlaybookType = "string",
ReferencedTools = new[]
{
"string",
},
});
example, err := diagflow.NewCxPlaybook(ctx, "cxPlaybookResource", &diagflow.CxPlaybookArgs{
DisplayName: pulumi.String("string"),
Goal: pulumi.String("string"),
Instruction: &diagflow.CxPlaybookInstructionArgs{
Guidelines: pulumi.String("string"),
Steps: diagflow.CxPlaybookInstructionStepArray{
&diagflow.CxPlaybookInstructionStepArgs{
Steps: pulumi.String("string"),
Text: pulumi.String("string"),
},
},
},
LlmModelSettings: &diagflow.CxPlaybookLlmModelSettingsArgs{
Model: pulumi.String("string"),
PromptText: pulumi.String("string"),
},
Parent: pulumi.String("string"),
PlaybookType: pulumi.String("string"),
ReferencedTools: pulumi.StringArray{
pulumi.String("string"),
},
})
var cxPlaybookResource = new CxPlaybook("cxPlaybookResource", CxPlaybookArgs.builder()
.displayName("string")
.goal("string")
.instruction(CxPlaybookInstructionArgs.builder()
.guidelines("string")
.steps(CxPlaybookInstructionStepArgs.builder()
.steps("string")
.text("string")
.build())
.build())
.llmModelSettings(CxPlaybookLlmModelSettingsArgs.builder()
.model("string")
.promptText("string")
.build())
.parent("string")
.playbookType("string")
.referencedTools("string")
.build());
cx_playbook_resource = gcp.diagflow.CxPlaybook("cxPlaybookResource",
display_name="string",
goal="string",
instruction={
"guidelines": "string",
"steps": [{
"steps": "string",
"text": "string",
}],
},
llm_model_settings={
"model": "string",
"prompt_text": "string",
},
parent="string",
playbook_type="string",
referenced_tools=["string"])
const cxPlaybookResource = new gcp.diagflow.CxPlaybook("cxPlaybookResource", {
displayName: "string",
goal: "string",
instruction: {
guidelines: "string",
steps: [{
steps: "string",
text: "string",
}],
},
llmModelSettings: {
model: "string",
promptText: "string",
},
parent: "string",
playbookType: "string",
referencedTools: ["string"],
});
type: gcp:diagflow:CxPlaybook
properties:
displayName: string
goal: string
instruction:
guidelines: string
steps:
- steps: string
text: string
llmModelSettings:
model: string
promptText: string
parent: string
playbookType: string
referencedTools:
- string
CxPlaybook Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The CxPlaybook resource accepts the following input properties:
- Display
Name string - The human-readable name of the playbook, unique within an agent.
- Goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- Instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- Llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- Parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- Playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - Referenced
Tools List<string> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- Display
Name string - The human-readable name of the playbook, unique within an agent.
- Goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- Instruction
Cx
Playbook Instruction Args - Instruction to accomplish target goal. Structure is documented below.
- Llm
Model CxSettings Playbook Llm Model Settings Args - Llm model settings for the playbook. Structure is documented below.
- Parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- Playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - Referenced
Tools []string - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- display
Name String - The human-readable name of the playbook, unique within an agent.
- goal String
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- parent String
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type String - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Tools List<String> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- display
Name string - The human-readable name of the playbook, unique within an agent.
- goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Tools string[] - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- display_
name str - The human-readable name of the playbook, unique within an agent.
- goal str
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction Args - Instruction to accomplish target goal. Structure is documented below.
- llm_
model_ Cxsettings Playbook Llm Model Settings Args - Llm model settings for the playbook. Structure is documented below.
- parent str
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook_
type str - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced_
tools Sequence[str] - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- display
Name String - The human-readable name of the playbook, unique within an agent.
- goal String
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction Property Map
- Instruction to accomplish target goal. Structure is documented below.
- llm
Model Property MapSettings - Llm model settings for the playbook. Structure is documented below.
- parent String
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type String - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Tools List<String> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
Outputs
All input properties are implicitly available as output properties. Additionally, the CxPlaybook resource produces the following output properties:
- Create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- Referenced
Flows List<string> - The resource name of flows referenced by the current playbook in the instructions.
- Referenced
Playbooks List<string> - The resource name of other playbooks referenced by the current playbook in the instructions.
- Token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- Update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- Referenced
Flows []string - The resource name of flows referenced by the current playbook in the instructions.
- Referenced
Playbooks []string - The resource name of other playbooks referenced by the current playbook in the instructions.
- Token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- Update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time String - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- referenced
Flows List<String> - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks List<String> - The resource name of other playbooks referenced by the current playbook in the instructions.
- token
Count String - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time String - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- id string
- The provider-assigned unique ID for this managed resource.
- name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- referenced
Flows string[] - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks string[] - The resource name of other playbooks referenced by the current playbook in the instructions.
- token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create_
time str - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- id str
- The provider-assigned unique ID for this managed resource.
- name str
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- referenced_
flows Sequence[str] - The resource name of flows referenced by the current playbook in the instructions.
- referenced_
playbooks Sequence[str] - The resource name of other playbooks referenced by the current playbook in the instructions.
- token_
count str - Estimated number of tokes current playbook takes when sent to the LLM.
- update_
time str - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time String - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- referenced
Flows List<String> - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks List<String> - The resource name of other playbooks referenced by the current playbook in the instructions.
- token
Count String - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time String - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
Look up Existing CxPlaybook Resource
Get an existing CxPlaybook resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: CxPlaybookState, opts?: CustomResourceOptions): CxPlaybook
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
create_time: Optional[str] = None,
display_name: Optional[str] = None,
goal: Optional[str] = None,
instruction: Optional[CxPlaybookInstructionArgs] = None,
llm_model_settings: Optional[CxPlaybookLlmModelSettingsArgs] = None,
name: Optional[str] = None,
parent: Optional[str] = None,
playbook_type: Optional[str] = None,
referenced_flows: Optional[Sequence[str]] = None,
referenced_playbooks: Optional[Sequence[str]] = None,
referenced_tools: Optional[Sequence[str]] = None,
token_count: Optional[str] = None,
update_time: Optional[str] = None) -> CxPlaybook
func GetCxPlaybook(ctx *Context, name string, id IDInput, state *CxPlaybookState, opts ...ResourceOption) (*CxPlaybook, error)
public static CxPlaybook Get(string name, Input<string> id, CxPlaybookState? state, CustomResourceOptions? opts = null)
public static CxPlaybook get(String name, Output<String> id, CxPlaybookState state, CustomResourceOptions options)
resources: _: type: gcp:diagflow:CxPlaybook get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Display
Name string - The human-readable name of the playbook, unique within an agent.
- Goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- Instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- Llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- Name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- Parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- Playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - Referenced
Flows List<string> - The resource name of flows referenced by the current playbook in the instructions.
- Referenced
Playbooks List<string> - The resource name of other playbooks referenced by the current playbook in the instructions.
- Referenced
Tools List<string> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- Token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- Update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- Display
Name string - The human-readable name of the playbook, unique within an agent.
- Goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- Instruction
Cx
Playbook Instruction Args - Instruction to accomplish target goal. Structure is documented below.
- Llm
Model CxSettings Playbook Llm Model Settings Args - Llm model settings for the playbook. Structure is documented below.
- Name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- Parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- Playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - Referenced
Flows []string - The resource name of flows referenced by the current playbook in the instructions.
- Referenced
Playbooks []string - The resource name of other playbooks referenced by the current playbook in the instructions.
- Referenced
Tools []string - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- Token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- Update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time String - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- display
Name String - The human-readable name of the playbook, unique within an agent.
- goal String
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- name String
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- parent String
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type String - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Flows List<String> - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks List<String> - The resource name of other playbooks referenced by the current playbook in the instructions.
- referenced
Tools List<String> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- token
Count String - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time String - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time string - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- display
Name string - The human-readable name of the playbook, unique within an agent.
- goal string
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction - Instruction to accomplish target goal. Structure is documented below.
- llm
Model CxSettings Playbook Llm Model Settings - Llm model settings for the playbook. Structure is documented below.
- name string
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- parent string
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type string - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Flows string[] - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks string[] - The resource name of other playbooks referenced by the current playbook in the instructions.
- referenced
Tools string[] - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- token
Count string - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time string - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create_
time str - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- display_
name str - The human-readable name of the playbook, unique within an agent.
- goal str
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction
Cx
Playbook Instruction Args - Instruction to accomplish target goal. Structure is documented below.
- llm_
model_ Cxsettings Playbook Llm Model Settings Args - Llm model settings for the playbook. Structure is documented below.
- name str
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- parent str
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook_
type str - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced_
flows Sequence[str] - The resource name of flows referenced by the current playbook in the instructions.
- referenced_
playbooks Sequence[str] - The resource name of other playbooks referenced by the current playbook in the instructions.
- referenced_
tools Sequence[str] - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- token_
count str - Estimated number of tokes current playbook takes when sent to the LLM.
- update_
time str - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- create
Time String - The timestamp of initial playbook creation. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
- display
Name String - The human-readable name of the playbook, unique within an agent.
- goal String
- High level description of the goal the playbook intend to accomplish. A goal should be concise since it's visible to other playbooks that may reference this playbook.
- instruction Property Map
- Instruction to accomplish target goal. Structure is documented below.
- llm
Model Property MapSettings - Llm model settings for the playbook. Structure is documented below.
- name String
- The unique identifier of the Playbook. Format: projects//locations//agents//playbooks/.
- parent String
- The agent to create a Playbook for. Format: projects//locations//agents/.
- playbook
Type String - Type of the playbook.
Possible values are:
PLAYBOOK_TYPE_UNSPECIFIED
,TASK
,ROUTINE
. - referenced
Flows List<String> - The resource name of flows referenced by the current playbook in the instructions.
- referenced
Playbooks List<String> - The resource name of other playbooks referenced by the current playbook in the instructions.
- referenced
Tools List<String> - The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
- token
Count String - Estimated number of tokes current playbook takes when sent to the LLM.
- update
Time String - Last time the playbook version was updated. Uses RFC 3339, where generated output will always be Z-normalized and uses 0, 3, 6 or 9 fractional digits. Offsets other than "Z" are also accepted. Examples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" or "2014-10-02T15:01:23+05:30".
Supporting Types
CxPlaybookInstruction, CxPlaybookInstructionArgs
- Guidelines string
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- Steps
List<Cx
Playbook Instruction Step> - Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
- Guidelines string
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- Steps
[]Cx
Playbook Instruction Step - Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
- guidelines String
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- steps
List<Cx
Playbook Instruction Step> - Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
- guidelines string
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- steps
Cx
Playbook Instruction Step[] - Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
- guidelines str
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- steps
Sequence[Cx
Playbook Instruction Step] - Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
- guidelines String
- General guidelines for the playbook. These are unstructured instructions that are not directly part of the goal, e.g. "Always be polite". It's valid for this text to be long and used instead of steps altogether.
- steps List<Property Map>
- Ordered list of step by step execution instructions to accomplish target goal. Structure is documented below.
CxPlaybookInstructionStep, CxPlaybookInstructionStepArgs
CxPlaybookLlmModelSettings, CxPlaybookLlmModelSettingsArgs
- Model string
- The selected LLM model.
- Prompt
Text string - The custom prompt to use.
- Model string
- The selected LLM model.
- Prompt
Text string - The custom prompt to use.
- model String
- The selected LLM model.
- prompt
Text String - The custom prompt to use.
- model string
- The selected LLM model.
- prompt
Text string - The custom prompt to use.
- model str
- The selected LLM model.
- prompt_
text str - The custom prompt to use.
- model String
- The selected LLM model.
- prompt
Text String - The custom prompt to use.
Import
Playbook can be imported using any of these accepted formats:
{{parent}}/playbooks/{{name}}
{{parent}}/{{name}}
When using the pulumi import
command, Playbook can be imported using one of the formats above. For example:
$ pulumi import gcp:diagflow/cxPlaybook:CxPlaybook default {{parent}}/playbooks/{{name}}
$ pulumi import gcp:diagflow/cxPlaybook:CxPlaybook default {{parent}}/{{name}}
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- Google Cloud (GCP) Classic pulumi/pulumi-gcp
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
google-beta
Terraform Provider.