1. Packages
  2. Google Cloud (GCP) Classic
  3. API Docs
  4. vertex
  5. AiFeatureStoreEntityType
Google Cloud Classic v6.66.0 published on Monday, Sep 18, 2023 by Pulumi

gcp.vertex.AiFeatureStoreEntityType

Explore with Pulumi AI

gcp logo
Google Cloud Classic v6.66.0 published on Monday, Sep 18, 2023 by Pulumi

    An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

    To get more information about FeaturestoreEntitytype, see:

    Example Usage

    Vertex Ai Featurestore Entitytype

    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
        {
            Labels = 
            {
                { "foo", "bar" },
            },
            Region = "us-central1",
            OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
            {
                FixedNodeCount = 2,
            },
            EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
            {
                KmsKeyName = "kms-name",
            },
        });
    
        var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
        {
            Labels = 
            {
                { "foo", "bar" },
            },
            Description = "test description",
            Featurestore = featurestore.Id,
            MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
            {
                SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
                {
                    Disabled = false,
                    MonitoringIntervalDays = 1,
                    StalenessDays = 21,
                },
                NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
                {
                    Value = 0.8,
                },
                CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
                {
                    Value = 10,
                },
                ImportFeaturesAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs
                {
                    State = "ENABLED",
                    AnomalyDetectionBaseline = "PREVIOUS_IMPORT_FEATURES_STATS",
                },
            },
        });
    
    });
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v6/go/gcp/vertex"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
    			Labels: pulumi.StringMap{
    				"foo": pulumi.String("bar"),
    			},
    			Region: pulumi.String("us-central1"),
    			OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
    				FixedNodeCount: pulumi.Int(2),
    			},
    			EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
    				KmsKeyName: pulumi.String("kms-name"),
    			},
    		})
    		if err != nil {
    			return err
    		}
    		_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
    			Labels: pulumi.StringMap{
    				"foo": pulumi.String("bar"),
    			},
    			Description:  pulumi.String("test description"),
    			Featurestore: featurestore.ID(),
    			MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
    				SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
    					Disabled:               pulumi.Bool(false),
    					MonitoringIntervalDays: pulumi.Int(1),
    					StalenessDays:          pulumi.Int(21),
    				},
    				NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
    					Value: pulumi.Float64(0.8),
    				},
    				CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
    					Value: pulumi.Float64(10),
    				},
    				ImportFeaturesAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs{
    					State:                    pulumi.String("ENABLED"),
    					AnomalyDetectionBaseline: pulumi.String("PREVIOUS_IMPORT_FEATURES_STATS"),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.vertex.AiFeatureStore;
    import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
    import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
    import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()        
                .labels(Map.of("foo", "bar"))
                .region("us-central1")
                .onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
                    .fixedNodeCount(2)
                    .build())
                .encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
                    .kmsKeyName("kms-name")
                    .build())
                .build());
    
            var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()        
                .labels(Map.of("foo", "bar"))
                .description("test description")
                .featurestore(featurestore.id())
                .monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
                    .snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
                        .disabled(false)
                        .monitoringIntervalDays(1)
                        .stalenessDays(21)
                        .build())
                    .numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
                        .value(0.8)
                        .build())
                    .categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
                        .value(10)
                        .build())
                    .importFeaturesAnalysis(AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs.builder()
                        .state("ENABLED")
                        .anomalyDetectionBaseline("PREVIOUS_IMPORT_FEATURES_STATS")
                        .build())
                    .build())
                .build());
    
        }
    }
    
    import pulumi
    import pulumi_gcp as gcp
    
    featurestore = gcp.vertex.AiFeatureStore("featurestore",
        labels={
            "foo": "bar",
        },
        region="us-central1",
        online_serving_config=gcp.vertex.AiFeatureStoreOnlineServingConfigArgs(
            fixed_node_count=2,
        ),
        encryption_spec=gcp.vertex.AiFeatureStoreEncryptionSpecArgs(
            kms_key_name="kms-name",
        ))
    entity = gcp.vertex.AiFeatureStoreEntityType("entity",
        labels={
            "foo": "bar",
        },
        description="test description",
        featurestore=featurestore.id,
        monitoring_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs(
            snapshot_analysis=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs(
                disabled=False,
                monitoring_interval_days=1,
                staleness_days=21,
            ),
            numerical_threshold_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs(
                value=0.8,
            ),
            categorical_threshold_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs(
                value=10,
            ),
            import_features_analysis=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs(
                state="ENABLED",
                anomaly_detection_baseline="PREVIOUS_IMPORT_FEATURES_STATS",
            ),
        ))
    
    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
        labels: {
            foo: "bar",
        },
        region: "us-central1",
        onlineServingConfig: {
            fixedNodeCount: 2,
        },
        encryptionSpec: {
            kmsKeyName: "kms-name",
        },
    });
    const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
        labels: {
            foo: "bar",
        },
        description: "test description",
        featurestore: featurestore.id,
        monitoringConfig: {
            snapshotAnalysis: {
                disabled: false,
                monitoringIntervalDays: 1,
                stalenessDays: 21,
            },
            numericalThresholdConfig: {
                value: 0.8,
            },
            categoricalThresholdConfig: {
                value: 10,
            },
            importFeaturesAnalysis: {
                state: "ENABLED",
                anomalyDetectionBaseline: "PREVIOUS_IMPORT_FEATURES_STATS",
            },
        },
    });
    
    resources:
      featurestore:
        type: gcp:vertex:AiFeatureStore
        properties:
          labels:
            foo: bar
          region: us-central1
          onlineServingConfig:
            fixedNodeCount: 2
          encryptionSpec:
            kmsKeyName: kms-name
      entity:
        type: gcp:vertex:AiFeatureStoreEntityType
        properties:
          labels:
            foo: bar
          description: test description
          featurestore: ${featurestore.id}
          monitoringConfig:
            snapshotAnalysis:
              disabled: false
              monitoringIntervalDays: 1
              stalenessDays: 21
            numericalThresholdConfig:
              value: 0.8
            categoricalThresholdConfig:
              value: 10
            importFeaturesAnalysis:
              state: ENABLED
              anomalyDetectionBaseline: PREVIOUS_IMPORT_FEATURES_STATS
    

    Vertex Ai Featurestore Entitytype With Beta Fields

    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Gcp = Pulumi.Gcp;
    
    return await Deployment.RunAsync(() => 
    {
        var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
        {
            Labels = 
            {
                { "foo", "bar" },
            },
            Region = "us-central1",
            OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
            {
                FixedNodeCount = 2,
            },
            EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
            {
                KmsKeyName = "kms-name",
            },
        }, new CustomResourceOptions
        {
            Provider = google_beta,
        });
    
        var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
        {
            Labels = 
            {
                { "foo", "bar" },
            },
            Featurestore = featurestore.Id,
            MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
            {
                SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
                {
                    Disabled = false,
                    MonitoringInterval = "86400s",
                },
                CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
                {
                    Value = 0.3,
                },
                NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
                {
                    Value = 0.3,
                },
            },
            OfflineStorageTtlDays = 30,
        }, new CustomResourceOptions
        {
            Provider = google_beta,
        });
    
    });
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-gcp/sdk/v6/go/gcp/vertex"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
    			Labels: pulumi.StringMap{
    				"foo": pulumi.String("bar"),
    			},
    			Region: pulumi.String("us-central1"),
    			OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
    				FixedNodeCount: pulumi.Int(2),
    			},
    			EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
    				KmsKeyName: pulumi.String("kms-name"),
    			},
    		}, pulumi.Provider(google_beta))
    		if err != nil {
    			return err
    		}
    		_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
    			Labels: pulumi.StringMap{
    				"foo": pulumi.String("bar"),
    			},
    			Featurestore: featurestore.ID(),
    			MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
    				SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
    					Disabled:           pulumi.Bool(false),
    					MonitoringInterval: pulumi.String("86400s"),
    				},
    				CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
    					Value: pulumi.Float64(0.3),
    				},
    				NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
    					Value: pulumi.Float64(0.3),
    				},
    			},
    			OfflineStorageTtlDays: pulumi.Int(30),
    		}, pulumi.Provider(google_beta))
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.gcp.vertex.AiFeatureStore;
    import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
    import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
    import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
    import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
    import com.pulumi.resources.CustomResourceOptions;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()        
                .labels(Map.of("foo", "bar"))
                .region("us-central1")
                .onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
                    .fixedNodeCount(2)
                    .build())
                .encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
                    .kmsKeyName("kms-name")
                    .build())
                .build(), CustomResourceOptions.builder()
                    .provider(google_beta)
                    .build());
    
            var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()        
                .labels(Map.of("foo", "bar"))
                .featurestore(featurestore.id())
                .monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
                    .snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
                        .disabled(false)
                        .monitoringInterval("86400s")
                        .build())
                    .categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
                        .value(0.3)
                        .build())
                    .numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
                        .value(0.3)
                        .build())
                    .build())
                .offlineStorageTtlDays(30)
                .build(), CustomResourceOptions.builder()
                    .provider(google_beta)
                    .build());
    
        }
    }
    
    import pulumi
    import pulumi_gcp as gcp
    
    featurestore = gcp.vertex.AiFeatureStore("featurestore",
        labels={
            "foo": "bar",
        },
        region="us-central1",
        online_serving_config=gcp.vertex.AiFeatureStoreOnlineServingConfigArgs(
            fixed_node_count=2,
        ),
        encryption_spec=gcp.vertex.AiFeatureStoreEncryptionSpecArgs(
            kms_key_name="kms-name",
        ),
        opts=pulumi.ResourceOptions(provider=google_beta))
    entity = gcp.vertex.AiFeatureStoreEntityType("entity",
        labels={
            "foo": "bar",
        },
        featurestore=featurestore.id,
        monitoring_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs(
            snapshot_analysis=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs(
                disabled=False,
                monitoring_interval="86400s",
            ),
            categorical_threshold_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs(
                value=0.3,
            ),
            numerical_threshold_config=gcp.vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs(
                value=0.3,
            ),
        ),
        offline_storage_ttl_days=30,
        opts=pulumi.ResourceOptions(provider=google_beta))
    
    import * as pulumi from "@pulumi/pulumi";
    import * as gcp from "@pulumi/gcp";
    
    const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
        labels: {
            foo: "bar",
        },
        region: "us-central1",
        onlineServingConfig: {
            fixedNodeCount: 2,
        },
        encryptionSpec: {
            kmsKeyName: "kms-name",
        },
    }, {
        provider: google_beta,
    });
    const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
        labels: {
            foo: "bar",
        },
        featurestore: featurestore.id,
        monitoringConfig: {
            snapshotAnalysis: {
                disabled: false,
                monitoringInterval: "86400s",
            },
            categoricalThresholdConfig: {
                value: 0.3,
            },
            numericalThresholdConfig: {
                value: 0.3,
            },
        },
        offlineStorageTtlDays: 30,
    }, {
        provider: google_beta,
    });
    
    resources:
      featurestore:
        type: gcp:vertex:AiFeatureStore
        properties:
          labels:
            foo: bar
          region: us-central1
          onlineServingConfig:
            fixedNodeCount: 2
          encryptionSpec:
            kmsKeyName: kms-name
        options:
          provider: ${["google-beta"]}
      entity:
        type: gcp:vertex:AiFeatureStoreEntityType
        properties:
          labels:
            foo: bar
          featurestore: ${featurestore.id}
          monitoringConfig:
            snapshotAnalysis:
              disabled: false
              monitoringInterval: 86400s
            categoricalThresholdConfig:
              value: 0.3
            numericalThresholdConfig:
              value: 0.3
          offlineStorageTtlDays: 30
        options:
          provider: ${["google-beta"]}
    

    Create AiFeatureStoreEntityType Resource

    new AiFeatureStoreEntityType(name: string, args: AiFeatureStoreEntityTypeArgs, opts?: CustomResourceOptions);
    @overload
    def AiFeatureStoreEntityType(resource_name: str,
                                 opts: Optional[ResourceOptions] = None,
                                 description: Optional[str] = None,
                                 featurestore: Optional[str] = None,
                                 labels: Optional[Mapping[str, str]] = None,
                                 monitoring_config: Optional[AiFeatureStoreEntityTypeMonitoringConfigArgs] = None,
                                 name: Optional[str] = None,
                                 offline_storage_ttl_days: Optional[int] = None)
    @overload
    def AiFeatureStoreEntityType(resource_name: str,
                                 args: AiFeatureStoreEntityTypeArgs,
                                 opts: Optional[ResourceOptions] = None)
    func NewAiFeatureStoreEntityType(ctx *Context, name string, args AiFeatureStoreEntityTypeArgs, opts ...ResourceOption) (*AiFeatureStoreEntityType, error)
    public AiFeatureStoreEntityType(string name, AiFeatureStoreEntityTypeArgs args, CustomResourceOptions? opts = null)
    public AiFeatureStoreEntityType(String name, AiFeatureStoreEntityTypeArgs args)
    public AiFeatureStoreEntityType(String name, AiFeatureStoreEntityTypeArgs args, CustomResourceOptions options)
    
    type: gcp:vertex:AiFeatureStoreEntityType
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    
    name string
    The unique name of the resource.
    args AiFeatureStoreEntityTypeArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args AiFeatureStoreEntityTypeArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args AiFeatureStoreEntityTypeArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args AiFeatureStoreEntityTypeArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args AiFeatureStoreEntityTypeArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    AiFeatureStoreEntityType Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    The AiFeatureStoreEntityType resource accepts the following input properties:

    Featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    Description string

    Optional. Description of the EntityType.

    Labels Dictionary<string, string>

    A set of key/value label pairs to assign to this EntityType.

    MonitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    Name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    OfflineStorageTtlDays int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    Featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    Description string

    Optional. Description of the EntityType.

    Labels map[string]string

    A set of key/value label pairs to assign to this EntityType.

    MonitoringConfig AiFeatureStoreEntityTypeMonitoringConfigArgs

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    Name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    OfflineStorageTtlDays int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    featurestore String

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    description String

    Optional. Description of the EntityType.

    labels Map<String,String>

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name String

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays Integer

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    description string

    Optional. Description of the EntityType.

    labels {[key: string]: string}

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays number

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    featurestore str

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    description str

    Optional. Description of the EntityType.

    labels Mapping[str, str]

    A set of key/value label pairs to assign to this EntityType.

    monitoring_config AiFeatureStoreEntityTypeMonitoringConfigArgs

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name str

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offline_storage_ttl_days int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    featurestore String

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    description String

    Optional. Description of the EntityType.

    labels Map<String>

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig Property Map

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name String

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays Number

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    Outputs

    All input properties are implicitly available as output properties. Additionally, the AiFeatureStoreEntityType resource produces the following output properties:

    CreateTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Etag string

    Used to perform consistent read-modify-write updates.

    Id string

    The provider-assigned unique ID for this managed resource.

    Region string

    The region of the EntityType.

    UpdateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    CreateTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Etag string

    Used to perform consistent read-modify-write updates.

    Id string

    The provider-assigned unique ID for this managed resource.

    Region string

    The region of the EntityType.

    UpdateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime String

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    etag String

    Used to perform consistent read-modify-write updates.

    id String

    The provider-assigned unique ID for this managed resource.

    region String

    The region of the EntityType.

    updateTime String

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    etag string

    Used to perform consistent read-modify-write updates.

    id string

    The provider-assigned unique ID for this managed resource.

    region string

    The region of the EntityType.

    updateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    create_time str

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    etag str

    Used to perform consistent read-modify-write updates.

    id str

    The provider-assigned unique ID for this managed resource.

    region str

    The region of the EntityType.

    update_time str

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime String

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    etag String

    Used to perform consistent read-modify-write updates.

    id String

    The provider-assigned unique ID for this managed resource.

    region String

    The region of the EntityType.

    updateTime String

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Look up Existing AiFeatureStoreEntityType Resource

    Get an existing AiFeatureStoreEntityType resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

    public static get(name: string, id: Input<ID>, state?: AiFeatureStoreEntityTypeState, opts?: CustomResourceOptions): AiFeatureStoreEntityType
    @staticmethod
    def get(resource_name: str,
            id: str,
            opts: Optional[ResourceOptions] = None,
            create_time: Optional[str] = None,
            description: Optional[str] = None,
            etag: Optional[str] = None,
            featurestore: Optional[str] = None,
            labels: Optional[Mapping[str, str]] = None,
            monitoring_config: Optional[AiFeatureStoreEntityTypeMonitoringConfigArgs] = None,
            name: Optional[str] = None,
            offline_storage_ttl_days: Optional[int] = None,
            region: Optional[str] = None,
            update_time: Optional[str] = None) -> AiFeatureStoreEntityType
    func GetAiFeatureStoreEntityType(ctx *Context, name string, id IDInput, state *AiFeatureStoreEntityTypeState, opts ...ResourceOption) (*AiFeatureStoreEntityType, error)
    public static AiFeatureStoreEntityType Get(string name, Input<string> id, AiFeatureStoreEntityTypeState? state, CustomResourceOptions? opts = null)
    public static AiFeatureStoreEntityType get(String name, Output<String> id, AiFeatureStoreEntityTypeState state, CustomResourceOptions options)
    Resource lookup is not supported in YAML
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    resource_name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    The following state arguments are supported:
    CreateTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Description string

    Optional. Description of the EntityType.

    Etag string

    Used to perform consistent read-modify-write updates.

    Featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    Labels Dictionary<string, string>

    A set of key/value label pairs to assign to this EntityType.

    MonitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    Name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    OfflineStorageTtlDays int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    Region string

    The region of the EntityType.

    UpdateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    CreateTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Description string

    Optional. Description of the EntityType.

    Etag string

    Used to perform consistent read-modify-write updates.

    Featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    Labels map[string]string

    A set of key/value label pairs to assign to this EntityType.

    MonitoringConfig AiFeatureStoreEntityTypeMonitoringConfigArgs

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    Name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    OfflineStorageTtlDays int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    Region string

    The region of the EntityType.

    UpdateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime String

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    description String

    Optional. Description of the EntityType.

    etag String

    Used to perform consistent read-modify-write updates.

    featurestore String

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    labels Map<String,String>

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name String

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays Integer

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    region String

    The region of the EntityType.

    updateTime String

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime string

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    description string

    Optional. Description of the EntityType.

    etag string

    Used to perform consistent read-modify-write updates.

    featurestore string

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    labels {[key: string]: string}

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig AiFeatureStoreEntityTypeMonitoringConfig

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name string

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays number

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    region string

    The region of the EntityType.

    updateTime string

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    create_time str

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    description str

    Optional. Description of the EntityType.

    etag str

    Used to perform consistent read-modify-write updates.

    featurestore str

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    labels Mapping[str, str]

    A set of key/value label pairs to assign to this EntityType.

    monitoring_config AiFeatureStoreEntityTypeMonitoringConfigArgs

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name str

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offline_storage_ttl_days int

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    region str

    The region of the EntityType.

    update_time str

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    createTime String

    The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    description String

    Optional. Description of the EntityType.

    etag String

    Used to perform consistent read-modify-write updates.

    featurestore String

    The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.


    labels Map<String>

    A set of key/value label pairs to assign to this EntityType.

    monitoringConfig Property Map

    The default monitoring configuration for all Features under this EntityType. If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

    name String

    The name of the EntityType. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number.

    offlineStorageTtlDays Number

    Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

    region String

    The region of the EntityType.

    updateTime String

    The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

    Supporting Types

    AiFeatureStoreEntityTypeMonitoringConfig, AiFeatureStoreEntityTypeMonitoringConfigArgs

    CategoricalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    ImportFeaturesAnalysis AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    NumericalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    SnapshotAnalysis AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    CategoricalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    ImportFeaturesAnalysis AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    NumericalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    SnapshotAnalysis AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    categoricalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    importFeaturesAnalysis AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    numericalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    snapshotAnalysis AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    categoricalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    importFeaturesAnalysis AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    numericalThresholdConfig AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    snapshotAnalysis AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    categorical_threshold_config AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    import_features_analysis AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    numerical_threshold_config AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    snapshot_analysis AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    categoricalThresholdConfig Property Map

    Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING). Structure is documented below.

    importFeaturesAnalysis Property Map

    The config for ImportFeatures Analysis Based Feature Monitoring. Structure is documented below.

    numericalThresholdConfig Property Map

    Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64). Structure is documented below.

    snapshotAnalysis Property Map

    The config for Snapshot Analysis Based Feature Monitoring. Structure is documented below.

    AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfig, AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs

    Value double

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    Value float64

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value Double

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value number

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value float

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value Number

    Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysis, AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs

    AnomalyDetectionBaseline string

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    State string

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
    AnomalyDetectionBaseline string

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    State string

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
    anomalyDetectionBaseline String

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    state String

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
    anomalyDetectionBaseline string

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    state string

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
    anomaly_detection_baseline str

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    state str

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.
    anomalyDetectionBaseline String

    Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:

    • LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
    • MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
    • PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.
    state String

    Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:

    • DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
    • ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
    • DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.

    AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfig, AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs

    Value double

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    Value float64

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value Double

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value number

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value float

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    value Number

    Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.

    AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysis, AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs

    Disabled bool

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    MonitoringInterval string

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    MonitoringIntervalDays int

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    StalenessDays int

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    Disabled bool

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    MonitoringInterval string

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    MonitoringIntervalDays int

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    StalenessDays int

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    disabled Boolean

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    monitoringInterval String

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    monitoringIntervalDays Integer

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    stalenessDays Integer

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    disabled boolean

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    monitoringInterval string

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    monitoringIntervalDays number

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    stalenessDays number

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    disabled bool

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    monitoring_interval str

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    monitoring_interval_days int

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    staleness_days int

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    disabled Boolean

    The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.

    monitoringInterval String

    Deprecated:

    monitoring_interval is deprecated and will be removed in a future release.

    monitoringIntervalDays Number

    Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1. If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.

    stalenessDays Number

    Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.

    Import

    FeaturestoreEntitytype can be imported using any of these accepted formats:

     $ pulumi import gcp:vertex/aiFeatureStoreEntityType:AiFeatureStoreEntityType default {{featurestore}}/entityTypes/{{name}}
    

    Package Details

    Repository
    Google Cloud (GCP) Classic pulumi/pulumi-gcp
    License
    Apache-2.0
    Notes

    This Pulumi package is based on the google-beta Terraform Provider.

    gcp logo
    Google Cloud Classic v6.66.0 published on Monday, Sep 18, 2023 by Pulumi