google-native.dataproc/v1.AutoscalingPolicy
Explore with Pulumi AI
Creates new autoscaling policy. Auto-naming is currently not supported for this resource.
Create AutoscalingPolicy Resource
new AutoscalingPolicy(name: string, args: AutoscalingPolicyArgs, opts?: CustomResourceOptions);
@overload
def AutoscalingPolicy(resource_name: str,
opts: Optional[ResourceOptions] = None,
basic_algorithm: Optional[BasicAutoscalingAlgorithmArgs] = None,
id: Optional[str] = None,
labels: Optional[Mapping[str, str]] = None,
location: Optional[str] = None,
project: Optional[str] = None,
secondary_worker_config: Optional[InstanceGroupAutoscalingPolicyConfigArgs] = None,
worker_config: Optional[InstanceGroupAutoscalingPolicyConfigArgs] = None)
@overload
def AutoscalingPolicy(resource_name: str,
args: AutoscalingPolicyArgs,
opts: Optional[ResourceOptions] = None)
func NewAutoscalingPolicy(ctx *Context, name string, args AutoscalingPolicyArgs, opts ...ResourceOption) (*AutoscalingPolicy, error)
public AutoscalingPolicy(string name, AutoscalingPolicyArgs args, CustomResourceOptions? opts = null)
public AutoscalingPolicy(String name, AutoscalingPolicyArgs args)
public AutoscalingPolicy(String name, AutoscalingPolicyArgs args, CustomResourceOptions options)
type: google-native:dataproc/v1:AutoscalingPolicy
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AutoscalingPolicyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AutoscalingPolicyArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AutoscalingPolicyArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AutoscalingPolicyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AutoscalingPolicyArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
AutoscalingPolicy Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The AutoscalingPolicy resource accepts the following input properties:
- Id string
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- Worker
Config Pulumi.Google Native. Dataproc. V1. Inputs. Instance Group Autoscaling Policy Config Args Describes how the autoscaler will operate for primary workers.
- Basic
Algorithm Pulumi.Google Native. Dataproc. V1. Inputs. Basic Autoscaling Algorithm Args - Labels Dictionary<string, string>
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- Location string
- Project string
- Secondary
Worker Pulumi.Config Google Native. Dataproc. V1. Inputs. Instance Group Autoscaling Policy Config Args Optional. Describes how the autoscaler will operate for secondary workers.
- Id string
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- Worker
Config InstanceGroup Autoscaling Policy Config Args Describes how the autoscaler will operate for primary workers.
- Basic
Algorithm BasicAutoscaling Algorithm Args - Labels map[string]string
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- Location string
- Project string
- Secondary
Worker InstanceConfig Group Autoscaling Policy Config Args Optional. Describes how the autoscaler will operate for secondary workers.
- id String
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- worker
Config InstanceGroup Autoscaling Policy Config Args Describes how the autoscaler will operate for primary workers.
- basic
Algorithm BasicAutoscaling Algorithm Args - labels Map<String,String>
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- location String
- project String
- secondary
Worker InstanceConfig Group Autoscaling Policy Config Args Optional. Describes how the autoscaler will operate for secondary workers.
- id string
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- worker
Config InstanceGroup Autoscaling Policy Config Args Describes how the autoscaler will operate for primary workers.
- basic
Algorithm BasicAutoscaling Algorithm Args - labels {[key: string]: string}
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- location string
- project string
- secondary
Worker InstanceConfig Group Autoscaling Policy Config Args Optional. Describes how the autoscaler will operate for secondary workers.
- id str
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- worker_
config InstanceGroup Autoscaling Policy Config Args Describes how the autoscaler will operate for primary workers.
- basic_
algorithm BasicAutoscaling Algorithm Args - labels Mapping[str, str]
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- location str
- project str
- secondary_
worker_ Instanceconfig Group Autoscaling Policy Config Args Optional. Describes how the autoscaler will operate for secondary workers.
- id String
The policy id.The id must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), and hyphens (-). Cannot begin or end with underscore or hyphen. Must consist of between 3 and 50 characters.
- worker
Config Property Map Describes how the autoscaler will operate for primary workers.
- basic
Algorithm Property Map - labels Map<String>
Optional. The labels to associate with this autoscaling policy. Label keys must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035 (https://www.ietf.org/rfc/rfc1035.txt). No more than 32 labels can be associated with an autoscaling policy.
- location String
- project String
- secondary
Worker Property MapConfig Optional. Describes how the autoscaler will operate for secondary workers.
Outputs
All input properties are implicitly available as output properties. Additionally, the AutoscalingPolicy resource produces the following output properties:
- Id string
The provider-assigned unique ID for this managed resource.
- Name string
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
- Id string
The provider-assigned unique ID for this managed resource.
- Name string
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
- id String
The provider-assigned unique ID for this managed resource.
- name String
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
- id string
The provider-assigned unique ID for this managed resource.
- name string
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
- id str
The provider-assigned unique ID for this managed resource.
- name str
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
- id String
The provider-assigned unique ID for this managed resource.
- name String
The "resource name" of the autoscaling policy, as described in https://cloud.google.com/apis/design/resource_names. For projects.regions.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/regions/{region}/autoscalingPolicies/{policy_id} For projects.locations.autoscalingPolicies, the resource name of the policy has the following format: projects/{project_id}/locations/{location}/autoscalingPolicies/{policy_id}
Supporting Types
BasicAutoscalingAlgorithm
- Cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- Spark
Standalone Pulumi.Config Google Native. Dataproc. V1. Inputs. Spark Standalone Autoscaling Config Optional. Spark Standalone autoscaling configuration
- Yarn
Config Pulumi.Google Native. Dataproc. V1. Inputs. Basic Yarn Autoscaling Config Optional. YARN autoscaling configuration.
- Cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- Spark
Standalone SparkConfig Standalone Autoscaling Config Optional. Spark Standalone autoscaling configuration
- Yarn
Config BasicYarn Autoscaling Config Optional. YARN autoscaling configuration.
- cooldown
Period String Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone SparkConfig Standalone Autoscaling Config Optional. Spark Standalone autoscaling configuration
- yarn
Config BasicYarn Autoscaling Config Optional. YARN autoscaling configuration.
- cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone SparkConfig Standalone Autoscaling Config Optional. Spark Standalone autoscaling configuration
- yarn
Config BasicYarn Autoscaling Config Optional. YARN autoscaling configuration.
- cooldown_
period str Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark_
standalone_ Sparkconfig Standalone Autoscaling Config Optional. Spark Standalone autoscaling configuration
- yarn_
config BasicYarn Autoscaling Config Optional. YARN autoscaling configuration.
- cooldown
Period String Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone Property MapConfig Optional. Spark Standalone autoscaling configuration
- yarn
Config Property Map Optional. YARN autoscaling configuration.
BasicAutoscalingAlgorithmResponse
- Cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- Spark
Standalone Pulumi.Config Google Native. Dataproc. V1. Inputs. Spark Standalone Autoscaling Config Response Optional. Spark Standalone autoscaling configuration
- Yarn
Config Pulumi.Google Native. Dataproc. V1. Inputs. Basic Yarn Autoscaling Config Response Optional. YARN autoscaling configuration.
- Cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- Spark
Standalone SparkConfig Standalone Autoscaling Config Response Optional. Spark Standalone autoscaling configuration
- Yarn
Config BasicYarn Autoscaling Config Response Optional. YARN autoscaling configuration.
- cooldown
Period String Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone SparkConfig Standalone Autoscaling Config Response Optional. Spark Standalone autoscaling configuration
- yarn
Config BasicYarn Autoscaling Config Response Optional. YARN autoscaling configuration.
- cooldown
Period string Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone SparkConfig Standalone Autoscaling Config Response Optional. Spark Standalone autoscaling configuration
- yarn
Config BasicYarn Autoscaling Config Response Optional. YARN autoscaling configuration.
- cooldown_
period str Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark_
standalone_ Sparkconfig Standalone Autoscaling Config Response Optional. Spark Standalone autoscaling configuration
- yarn_
config BasicYarn Autoscaling Config Response Optional. YARN autoscaling configuration.
- cooldown
Period String Optional. Duration between scaling events. A scaling period starts after the update operation from the previous event has completed.Bounds: 2m, 1d. Default: 2m.
- spark
Standalone Property MapConfig Optional. Spark Standalone autoscaling configuration
- yarn
Config Property Map Optional. YARN autoscaling configuration.
BasicYarnAutoscalingConfig
- Graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down doubleFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Up doubleFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Down doubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up doubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down float64Factor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Up float64Factor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Down float64Min Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up float64Min Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down DoubleFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up DoubleFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down DoubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up DoubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down numberFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up numberFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down numberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up numberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful_
decommission_ strtimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale_
down_ floatfactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale_
up_ floatfactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale_
down_ floatmin_ worker_ fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale_
up_ floatmin_ worker_ fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down NumberFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up NumberFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down NumberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up NumberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
BasicYarnAutoscalingConfigResponse
- Graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down doubleFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Down doubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up doubleFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Up doubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down float64Factor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Down float64Min Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up float64Factor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- Scale
Up float64Min Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down DoubleFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down DoubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up DoubleFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up DoubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission stringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down numberFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down numberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up numberFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up numberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful_
decommission_ strtimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale_
down_ floatfactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale_
down_ floatmin_ worker_ fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale_
up_ floatfactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale_
up_ floatmin_ worker_ fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for YARN graceful decommissioning of Node Managers. Specifies the duration to wait for jobs to complete before forcefully removing workers (and potentially interrupting jobs). Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down NumberFactor Fraction of average YARN pending memory in the last cooldown period for which to remove workers. A scale-down factor of 1 will result in scaling down so that there is no available memory remaining after the update (more aggressive scaling). A scale-down factor of 0 disables removing workers, which can be beneficial for autoscaling a single job. See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Down NumberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up NumberFactor Fraction of average YARN pending memory in the last cooldown period for which to add workers. A scale-up factor of 1.0 will result in scaling up so that there is no pending memory remaining after the update (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling). See How autoscaling works (https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling#how_autoscaling_works) for more information.Bounds: 0.0, 1.0.
- scale
Up NumberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
InstanceGroupAutoscalingPolicyConfig
- Max
Instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- Min
Instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- Weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- Max
Instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- Min
Instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- Weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances Integer Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances Integer Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight Integer
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances number Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances number Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight number
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max_
instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min_
instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances Number Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances Number Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight Number
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
InstanceGroupAutoscalingPolicyConfigResponse
- Max
Instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- Min
Instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- Weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- Max
Instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- Min
Instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- Weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances Integer Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances Integer Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight Integer
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances number Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances number Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight number
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max_
instances int Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min_
instances int Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight int
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
- max
Instances Number Maximum number of instances for this group. Required for primary workers. Note that by default, clusters will not use secondary workers. Required for secondary workers if the minimum secondary instances is set.Primary workers - Bounds: [min_instances, ). Secondary workers - Bounds: [min_instances, ). Default: 0.
- min
Instances Number Optional. Minimum number of instances for this group.Primary workers - Bounds: 2, max_instances. Default: 2. Secondary workers - Bounds: 0, max_instances. Default: 0.
- weight Number
Optional. Weight for the instance group, which is used to determine the fraction of total workers in the cluster from this instance group. For example, if primary workers have weight 2, and secondary workers have weight 1, the cluster will have approximately 2 primary workers for each secondary worker.The cluster may not reach the specified balance if constrained by min/max bounds or other autoscaling settings. For example, if max_instances for secondary workers is 0, then only primary workers will be added. The cluster can also be out of balance when created.If weight is not set on any instance group, the cluster will default to equal weight for all groups: the cluster will attempt to maintain an equal number of workers in each group within the configured size bounds for each group. If weight is set for one group only, the cluster will default to zero weight on the unset group. For example if weight is set only on primary workers, the cluster will use primary workers only and no secondary workers.
SparkStandaloneAutoscalingConfig
- Graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down doubleFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Up doubleFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Down doubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up doubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down float64Factor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Up float64Factor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Down float64Min Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up float64Min Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down DoubleFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up DoubleFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down DoubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up DoubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down numberFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up numberFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down numberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up numberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful_
decommission_ strtimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale_
down_ floatfactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale_
up_ floatfactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale_
down_ floatmin_ worker_ fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale_
up_ floatmin_ worker_ fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down NumberFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up NumberFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down NumberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up NumberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
SparkStandaloneAutoscalingConfigResponse
- Graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down doubleFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Down doubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up doubleFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Up doubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- Scale
Down float64Factor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Down float64Min Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- Scale
Up float64Factor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- Scale
Up float64Min Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down DoubleFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down DoubleMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up DoubleFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up DoubleMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission stringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down numberFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down numberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up numberFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up numberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful_
decommission_ strtimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale_
down_ floatfactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale_
down_ floatmin_ worker_ fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale_
up_ floatfactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale_
up_ floatmin_ worker_ fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- graceful
Decommission StringTimeout Timeout for Spark graceful decommissioning of spark workers. Specifies the duration to wait for spark worker to complete spark decomissioning tasks before forcefully removing workers. Only applicable to downscaling operations.Bounds: 0s, 1d.
- scale
Down NumberFactor Fraction of required executors to remove from Spark Serverless clusters. A scale-down factor of 1.0 will result in scaling down so that there are no more executors for the Spark Job.(more aggressive scaling). A scale-down factor closer to 0 will result in a smaller magnitude of scaling donw (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Down NumberMin Worker Fraction Optional. Minimum scale-down threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2 worker scale-down for the cluster to scale. A threshold of 0 means the autoscaler will scale down on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
- scale
Up NumberFactor Fraction of required workers to add to Spark Standalone clusters. A scale-up factor of 1.0 will result in scaling up so that there are no more required workers for the Spark Job (more aggressive scaling). A scale-up factor closer to 0 will result in a smaller magnitude of scaling up (less aggressive scaling).Bounds: 0.0, 1.0.
- scale
Up NumberMin Worker Fraction Optional. Minimum scale-up threshold as a fraction of total cluster size before scaling occurs. For example, in a 20-worker cluster, a threshold of 0.1 means the autoscaler must recommend at least a 2-worker scale-up for the cluster to scale. A threshold of 0 means the autoscaler will scale up on any recommended change.Bounds: 0.0, 1.0. Default: 0.0.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0