google-native.dialogflow/v2.getConversationModel
Gets conversation model.
Using getConversationModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getConversationModel(args: GetConversationModelArgs, opts?: InvokeOptions): Promise<GetConversationModelResult>
function getConversationModelOutput(args: GetConversationModelOutputArgs, opts?: InvokeOptions): Output<GetConversationModelResult>
def get_conversation_model(conversation_model_id: Optional[str] = None,
location: Optional[str] = None,
project: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetConversationModelResult
def get_conversation_model_output(conversation_model_id: Optional[pulumi.Input[str]] = None,
location: Optional[pulumi.Input[str]] = None,
project: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetConversationModelResult]
func LookupConversationModel(ctx *Context, args *LookupConversationModelArgs, opts ...InvokeOption) (*LookupConversationModelResult, error)
func LookupConversationModelOutput(ctx *Context, args *LookupConversationModelOutputArgs, opts ...InvokeOption) LookupConversationModelResultOutput
> Note: This function is named LookupConversationModel
in the Go SDK.
public static class GetConversationModel
{
public static Task<GetConversationModelResult> InvokeAsync(GetConversationModelArgs args, InvokeOptions? opts = null)
public static Output<GetConversationModelResult> Invoke(GetConversationModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetConversationModelResult> getConversationModel(GetConversationModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: google-native:dialogflow/v2:getConversationModel
arguments:
# arguments dictionary
The following arguments are supported:
- Conversation
Model stringId - Location string
- Project string
- Conversation
Model stringId - Location string
- Project string
- conversation
Model StringId - location String
- project String
- conversation
Model stringId - location string
- project string
- conversation_
model_ strid - location str
- project str
- conversation
Model StringId - location String
- project String
getConversationModel Result
The following output properties are available:
- Article
Suggestion Pulumi.Model Metadata Google Native. Dialogflow. V2. Outputs. Google Cloud Dialogflow V2Article Suggestion Model Metadata Response Metadata for article suggestion models.
- Create
Time string Creation time of this model.
- Datasets
List<Pulumi.
Google Native. Dialogflow. V2. Outputs. Google Cloud Dialogflow V2Input Dataset Response> Datasets used to create model.
- Display
Name string The display name of the model. At most 64 bytes long.
- Language
Code string Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- Name string
ConversationModel resource name. Format:
projects//conversationModels/
- Smart
Reply Pulumi.Model Metadata Google Native. Dialogflow. V2. Outputs. Google Cloud Dialogflow V2Smart Reply Model Metadata Response Metadata for smart reply models.
- State string
State of the model. A model can only serve prediction requests after it gets deployed.
- Article
Suggestion GoogleModel Metadata Cloud Dialogflow V2Article Suggestion Model Metadata Response Metadata for article suggestion models.
- Create
Time string Creation time of this model.
- Datasets
[]Google
Cloud Dialogflow V2Input Dataset Response Datasets used to create model.
- Display
Name string The display name of the model. At most 64 bytes long.
- Language
Code string Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- Name string
ConversationModel resource name. Format:
projects//conversationModels/
- Smart
Reply GoogleModel Metadata Cloud Dialogflow V2Smart Reply Model Metadata Response Metadata for smart reply models.
- State string
State of the model. A model can only serve prediction requests after it gets deployed.
- article
Suggestion GoogleModel Metadata Cloud Dialogflow V2Article Suggestion Model Metadata Response Metadata for article suggestion models.
- create
Time String Creation time of this model.
- datasets
List<Google
Cloud Dialogflow V2Input Dataset Response> Datasets used to create model.
- display
Name String The display name of the model. At most 64 bytes long.
- language
Code String Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- name String
ConversationModel resource name. Format:
projects//conversationModels/
- smart
Reply GoogleModel Metadata Cloud Dialogflow V2Smart Reply Model Metadata Response Metadata for smart reply models.
- state String
State of the model. A model can only serve prediction requests after it gets deployed.
- article
Suggestion GoogleModel Metadata Cloud Dialogflow V2Article Suggestion Model Metadata Response Metadata for article suggestion models.
- create
Time string Creation time of this model.
- datasets
Google
Cloud Dialogflow V2Input Dataset Response[] Datasets used to create model.
- display
Name string The display name of the model. At most 64 bytes long.
- language
Code string Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- name string
ConversationModel resource name. Format:
projects//conversationModels/
- smart
Reply GoogleModel Metadata Cloud Dialogflow V2Smart Reply Model Metadata Response Metadata for smart reply models.
- state string
State of the model. A model can only serve prediction requests after it gets deployed.
- article_
suggestion_ Googlemodel_ metadata Cloud Dialogflow V2Article Suggestion Model Metadata Response Metadata for article suggestion models.
- create_
time str Creation time of this model.
- datasets
Sequence[Google
Cloud Dialogflow V2Input Dataset Response] Datasets used to create model.
- display_
name str The display name of the model. At most 64 bytes long.
- language_
code str Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- name str
ConversationModel resource name. Format:
projects//conversationModels/
- smart_
reply_ Googlemodel_ metadata Cloud Dialogflow V2Smart Reply Model Metadata Response Metadata for smart reply models.
- state str
State of the model. A model can only serve prediction requests after it gets deployed.
- article
Suggestion Property MapModel Metadata Metadata for article suggestion models.
- create
Time String Creation time of this model.
- datasets List<Property Map>
Datasets used to create model.
- display
Name String The display name of the model. At most 64 bytes long.
- language
Code String Language code for the conversation model. If not specified, the language is en-US. Language at ConversationModel should be set for all non en-us languages. This should be a BCP-47 language tag. Example: "en-US".
- name String
ConversationModel resource name. Format:
projects//conversationModels/
- smart
Reply Property MapModel Metadata Metadata for smart reply models.
- state String
State of the model. A model can only serve prediction requests after it gets deployed.
Supporting Types
GoogleCloudDialogflowV2ArticleSuggestionModelMetadataResponse
- Training
Model stringType Optional. Type of the article suggestion model. If not provided, model_type is used.
- Training
Model stringType Optional. Type of the article suggestion model. If not provided, model_type is used.
- training
Model StringType Optional. Type of the article suggestion model. If not provided, model_type is used.
- training
Model stringType Optional. Type of the article suggestion model. If not provided, model_type is used.
- training_
model_ strtype Optional. Type of the article suggestion model. If not provided, model_type is used.
- training
Model StringType Optional. Type of the article suggestion model. If not provided, model_type is used.
GoogleCloudDialogflowV2InputDatasetResponse
- Dataset string
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
- Dataset string
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
- dataset String
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
- dataset string
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
- dataset str
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
- dataset String
ConversationDataset resource name. Format:
projects//locations//conversationDatasets/
GoogleCloudDialogflowV2SmartReplyModelMetadataResponse
- Training
Model stringType Optional. Type of the smart reply model. If not provided, model_type is used.
- Training
Model stringType Optional. Type of the smart reply model. If not provided, model_type is used.
- training
Model StringType Optional. Type of the smart reply model. If not provided, model_type is used.
- training
Model stringType Optional. Type of the smart reply model. If not provided, model_type is used.
- training_
model_ strtype Optional. Type of the smart reply model. If not provided, model_type is used.
- training
Model StringType Optional. Type of the smart reply model. If not provided, model_type is used.
Package Details
- Repository
- Google Cloud Native pulumi/pulumi-google-native
- License
- Apache-2.0