1. Packages
  2. Grafana Cloud
  3. API Docs
  4. machineLearning
  5. Alert
Grafana v0.8.0 published on Monday, Dec 9, 2024 by pulumiverse

grafana.machineLearning.Alert

Explore with Pulumi AI

grafana logo
Grafana v0.8.0 published on Monday, Dec 9, 2024 by pulumiverse

    Example Usage

    Forecast Alert

    This alert uses a forecast.

    import * as pulumi from "@pulumi/pulumi";
    import * as grafana from "@pulumiverse/grafana";
    
    const testAlertJob = new grafana.machinelearning.Job("test_alert_job", {
        name: "Test Job",
        metric: "tf_test_alert_job",
        datasourceType: "prometheus",
        datasourceUid: "abcd12345",
        queryParams: {
            expr: "grafanacloud_grafana_instance_active_user_count",
        },
    });
    const testJobAlert = new grafana.machinelearning.Alert("test_job_alert", {
        jobId: testAlertJob.id,
        title: "Test Alert",
        anomalyCondition: "any",
        threshold: ">0.8",
        window: "15m",
        noDataState: "OK",
    });
    
    import pulumi
    import pulumiverse_grafana as grafana
    
    test_alert_job = grafana.machine_learning.Job("test_alert_job",
        name="Test Job",
        metric="tf_test_alert_job",
        datasource_type="prometheus",
        datasource_uid="abcd12345",
        query_params={
            "expr": "grafanacloud_grafana_instance_active_user_count",
        })
    test_job_alert = grafana.machine_learning.Alert("test_job_alert",
        job_id=test_alert_job.id,
        title="Test Alert",
        anomaly_condition="any",
        threshold=">0.8",
        window="15m",
        no_data_state="OK")
    
    package main
    
    import (
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    	"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machineLearning"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		testAlertJob, err := machineLearning.NewJob(ctx, "test_alert_job", &machineLearning.JobArgs{
    			Name:           pulumi.String("Test Job"),
    			Metric:         pulumi.String("tf_test_alert_job"),
    			DatasourceType: pulumi.String("prometheus"),
    			DatasourceUid:  pulumi.String("abcd12345"),
    			QueryParams: pulumi.StringMap{
    				"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
    			},
    		})
    		if err != nil {
    			return err
    		}
    		_, err = machineLearning.NewAlert(ctx, "test_job_alert", &machineLearning.AlertArgs{
    			JobId:            testAlertJob.ID(),
    			Title:            pulumi.String("Test Alert"),
    			AnomalyCondition: pulumi.String("any"),
    			Threshold:        pulumi.String(">0.8"),
    			Window:           pulumi.String("15m"),
    			NoDataState:      pulumi.String("OK"),
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Grafana = Pulumiverse.Grafana;
    
    return await Deployment.RunAsync(() => 
    {
        var testAlertJob = new Grafana.MachineLearning.Job("test_alert_job", new()
        {
            Name = "Test Job",
            Metric = "tf_test_alert_job",
            DatasourceType = "prometheus",
            DatasourceUid = "abcd12345",
            QueryParams = 
            {
                { "expr", "grafanacloud_grafana_instance_active_user_count" },
            },
        });
    
        var testJobAlert = new Grafana.MachineLearning.Alert("test_job_alert", new()
        {
            JobId = testAlertJob.Id,
            Title = "Test Alert",
            AnomalyCondition = "any",
            Threshold = ">0.8",
            Window = "15m",
            NoDataState = "OK",
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.grafana.machineLearning.Job;
    import com.pulumi.grafana.machineLearning.JobArgs;
    import com.pulumi.grafana.machineLearning.Alert;
    import com.pulumi.grafana.machineLearning.AlertArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var testAlertJob = new Job("testAlertJob", JobArgs.builder()
                .name("Test Job")
                .metric("tf_test_alert_job")
                .datasourceType("prometheus")
                .datasourceUid("abcd12345")
                .queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
                .build());
    
            var testJobAlert = new Alert("testJobAlert", AlertArgs.builder()
                .jobId(testAlertJob.id())
                .title("Test Alert")
                .anomalyCondition("any")
                .threshold(">0.8")
                .window("15m")
                .noDataState("OK")
                .build());
    
        }
    }
    
    resources:
      testAlertJob:
        type: grafana:machineLearning:Job
        name: test_alert_job
        properties:
          name: Test Job
          metric: tf_test_alert_job
          datasourceType: prometheus
          datasourceUid: abcd12345
          queryParams:
            expr: grafanacloud_grafana_instance_active_user_count
      testJobAlert:
        type: grafana:machineLearning:Alert
        name: test_job_alert
        properties:
          jobId: ${testAlertJob.id}
          title: Test Alert
          anomalyCondition: any
          threshold: '>0.8'
          window: 15m
          noDataState: OK
    

    Outlier Alert

    This alert uses an outlier detector.

    import * as pulumi from "@pulumi/pulumi";
    import * as grafana from "@pulumiverse/grafana";
    
    const testAlertOutlierDetector = new grafana.machinelearning.OutlierDetector("test_alert_outlier_detector", {
        name: "Test Outlier",
        metric: "tf_test_alert_outlier",
        datasourceType: "prometheus",
        datasourceUid: "AbCd12345",
        queryParams: {
            expr: "grafanacloud_grafana_instance_active_user_count",
        },
        interval: 300,
        algorithm: {
            name: "dbscan",
            sensitivity: 0.5,
            config: {
                epsilon: 1,
            },
        },
    });
    const testOutlierAlert = new grafana.machinelearning.Alert("test_outlier_alert", {
        outlierId: testAlertOutlierDetector.id,
        title: "Test Alert",
        window: "1h",
    });
    
    import pulumi
    import pulumiverse_grafana as grafana
    
    test_alert_outlier_detector = grafana.machine_learning.OutlierDetector("test_alert_outlier_detector",
        name="Test Outlier",
        metric="tf_test_alert_outlier",
        datasource_type="prometheus",
        datasource_uid="AbCd12345",
        query_params={
            "expr": "grafanacloud_grafana_instance_active_user_count",
        },
        interval=300,
        algorithm={
            "name": "dbscan",
            "sensitivity": 0.5,
            "config": {
                "epsilon": 1,
            },
        })
    test_outlier_alert = grafana.machine_learning.Alert("test_outlier_alert",
        outlier_id=test_alert_outlier_detector.id,
        title="Test Alert",
        window="1h")
    
    package main
    
    import (
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    	"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machineLearning"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		testAlertOutlierDetector, err := machineLearning.NewOutlierDetector(ctx, "test_alert_outlier_detector", &machineLearning.OutlierDetectorArgs{
    			Name:           pulumi.String("Test Outlier"),
    			Metric:         pulumi.String("tf_test_alert_outlier"),
    			DatasourceType: pulumi.String("prometheus"),
    			DatasourceUid:  pulumi.String("AbCd12345"),
    			QueryParams: pulumi.StringMap{
    				"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
    			},
    			Interval: pulumi.Int(300),
    			Algorithm: &machinelearning.OutlierDetectorAlgorithmArgs{
    				Name:        pulumi.String("dbscan"),
    				Sensitivity: pulumi.Float64(0.5),
    				Config: &machinelearning.OutlierDetectorAlgorithmConfigArgs{
    					Epsilon: pulumi.Float64(1),
    				},
    			},
    		})
    		if err != nil {
    			return err
    		}
    		_, err = machineLearning.NewAlert(ctx, "test_outlier_alert", &machineLearning.AlertArgs{
    			OutlierId: testAlertOutlierDetector.ID(),
    			Title:     pulumi.String("Test Alert"),
    			Window:    pulumi.String("1h"),
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Grafana = Pulumiverse.Grafana;
    
    return await Deployment.RunAsync(() => 
    {
        var testAlertOutlierDetector = new Grafana.MachineLearning.OutlierDetector("test_alert_outlier_detector", new()
        {
            Name = "Test Outlier",
            Metric = "tf_test_alert_outlier",
            DatasourceType = "prometheus",
            DatasourceUid = "AbCd12345",
            QueryParams = 
            {
                { "expr", "grafanacloud_grafana_instance_active_user_count" },
            },
            Interval = 300,
            Algorithm = new Grafana.MachineLearning.Inputs.OutlierDetectorAlgorithmArgs
            {
                Name = "dbscan",
                Sensitivity = 0.5,
                Config = new Grafana.MachineLearning.Inputs.OutlierDetectorAlgorithmConfigArgs
                {
                    Epsilon = 1,
                },
            },
        });
    
        var testOutlierAlert = new Grafana.MachineLearning.Alert("test_outlier_alert", new()
        {
            OutlierId = testAlertOutlierDetector.Id,
            Title = "Test Alert",
            Window = "1h",
        });
    
    });
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.grafana.machineLearning.OutlierDetector;
    import com.pulumi.grafana.machineLearning.OutlierDetectorArgs;
    import com.pulumi.grafana.machineLearning.inputs.OutlierDetectorAlgorithmArgs;
    import com.pulumi.grafana.machineLearning.inputs.OutlierDetectorAlgorithmConfigArgs;
    import com.pulumi.grafana.machineLearning.Alert;
    import com.pulumi.grafana.machineLearning.AlertArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var testAlertOutlierDetector = new OutlierDetector("testAlertOutlierDetector", OutlierDetectorArgs.builder()
                .name("Test Outlier")
                .metric("tf_test_alert_outlier")
                .datasourceType("prometheus")
                .datasourceUid("AbCd12345")
                .queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
                .interval(300)
                .algorithm(OutlierDetectorAlgorithmArgs.builder()
                    .name("dbscan")
                    .sensitivity(0.5)
                    .config(OutlierDetectorAlgorithmConfigArgs.builder()
                        .epsilon(1)
                        .build())
                    .build())
                .build());
    
            var testOutlierAlert = new Alert("testOutlierAlert", AlertArgs.builder()
                .outlierId(testAlertOutlierDetector.id())
                .title("Test Alert")
                .window("1h")
                .build());
    
        }
    }
    
    resources:
      testAlertOutlierDetector:
        type: grafana:machineLearning:OutlierDetector
        name: test_alert_outlier_detector
        properties:
          name: Test Outlier
          metric: tf_test_alert_outlier
          datasourceType: prometheus
          datasourceUid: AbCd12345
          queryParams:
            expr: grafanacloud_grafana_instance_active_user_count
          interval: 300
          algorithm:
            name: dbscan
            sensitivity: 0.5
            config:
              epsilon: 1
      testOutlierAlert:
        type: grafana:machineLearning:Alert
        name: test_outlier_alert
        properties:
          outlierId: ${testAlertOutlierDetector.id}
          title: Test Alert
          window: 1h
    

    Create Alert Resource

    Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.

    Constructor syntax

    new Alert(name: string, args: AlertArgs, opts?: CustomResourceOptions);
    @overload
    def Alert(resource_name: str,
              args: AlertArgs,
              opts: Optional[ResourceOptions] = None)
    
    @overload
    def Alert(resource_name: str,
              opts: Optional[ResourceOptions] = None,
              title: Optional[str] = None,
              annotations: Optional[Mapping[str, str]] = None,
              anomaly_condition: Optional[str] = None,
              for_: Optional[str] = None,
              job_id: Optional[str] = None,
              labels: Optional[Mapping[str, str]] = None,
              no_data_state: Optional[str] = None,
              outlier_id: Optional[str] = None,
              threshold: Optional[str] = None,
              window: Optional[str] = None)
    func NewAlert(ctx *Context, name string, args AlertArgs, opts ...ResourceOption) (*Alert, error)
    public Alert(string name, AlertArgs args, CustomResourceOptions? opts = null)
    public Alert(String name, AlertArgs args)
    public Alert(String name, AlertArgs args, CustomResourceOptions options)
    
    type: grafana:machineLearning:Alert
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    

    Parameters

    name string
    The unique name of the resource.
    args AlertArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args AlertArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args AlertArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args AlertArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args AlertArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    Constructor example

    The following reference example uses placeholder values for all input properties.

    var alertResource = new Grafana.MachineLearning.Alert("alertResource", new()
    {
        Title = "string",
        Annotations = 
        {
            { "string", "string" },
        },
        AnomalyCondition = "string",
        For = "string",
        JobId = "string",
        Labels = 
        {
            { "string", "string" },
        },
        NoDataState = "string",
        OutlierId = "string",
        Threshold = "string",
        Window = "string",
    });
    
    example, err := machineLearning.NewAlert(ctx, "alertResource", &machineLearning.AlertArgs{
    	Title: pulumi.String("string"),
    	Annotations: pulumi.StringMap{
    		"string": pulumi.String("string"),
    	},
    	AnomalyCondition: pulumi.String("string"),
    	For:              pulumi.String("string"),
    	JobId:            pulumi.String("string"),
    	Labels: pulumi.StringMap{
    		"string": pulumi.String("string"),
    	},
    	NoDataState: pulumi.String("string"),
    	OutlierId:   pulumi.String("string"),
    	Threshold:   pulumi.String("string"),
    	Window:      pulumi.String("string"),
    })
    
    var alertResource = new Alert("alertResource", AlertArgs.builder()
        .title("string")
        .annotations(Map.of("string", "string"))
        .anomalyCondition("string")
        .for_("string")
        .jobId("string")
        .labels(Map.of("string", "string"))
        .noDataState("string")
        .outlierId("string")
        .threshold("string")
        .window("string")
        .build());
    
    alert_resource = grafana.machine_learning.Alert("alertResource",
        title="string",
        annotations={
            "string": "string",
        },
        anomaly_condition="string",
        for_="string",
        job_id="string",
        labels={
            "string": "string",
        },
        no_data_state="string",
        outlier_id="string",
        threshold="string",
        window="string")
    
    const alertResource = new grafana.machinelearning.Alert("alertResource", {
        title: "string",
        annotations: {
            string: "string",
        },
        anomalyCondition: "string",
        "for": "string",
        jobId: "string",
        labels: {
            string: "string",
        },
        noDataState: "string",
        outlierId: "string",
        threshold: "string",
        window: "string",
    });
    
    type: grafana:machineLearning:Alert
    properties:
        annotations:
            string: string
        anomalyCondition: string
        for: string
        jobId: string
        labels:
            string: string
        noDataState: string
        outlierId: string
        threshold: string
        title: string
        window: string
    

    Alert Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.

    The Alert resource accepts the following input properties:

    Title string
    The title of the alert.
    Annotations Dictionary<string, string>
    Annotations to add to the alert generated in Grafana.
    AnomalyCondition string
    The condition for when to consider a point as anomalous.
    For string
    How long values must be anomalous before firing an alert.
    JobId string
    The forecast this alert belongs to.
    Labels Dictionary<string, string>
    Labels to add to the alert generated in Grafana.
    NoDataState string
    How the alert should be processed when no data is returned by the underlying series
    OutlierId string
    The forecast this alert belongs to.
    Threshold string
    The threshold of points over the window that need to be anomalous to alert.
    Window string
    How much time to average values over
    Title string
    The title of the alert.
    Annotations map[string]string
    Annotations to add to the alert generated in Grafana.
    AnomalyCondition string
    The condition for when to consider a point as anomalous.
    For string
    How long values must be anomalous before firing an alert.
    JobId string
    The forecast this alert belongs to.
    Labels map[string]string
    Labels to add to the alert generated in Grafana.
    NoDataState string
    How the alert should be processed when no data is returned by the underlying series
    OutlierId string
    The forecast this alert belongs to.
    Threshold string
    The threshold of points over the window that need to be anomalous to alert.
    Window string
    How much time to average values over
    title String
    The title of the alert.
    annotations Map<String,String>
    Annotations to add to the alert generated in Grafana.
    anomalyCondition String
    The condition for when to consider a point as anomalous.
    for_ String
    How long values must be anomalous before firing an alert.
    jobId String
    The forecast this alert belongs to.
    labels Map<String,String>
    Labels to add to the alert generated in Grafana.
    noDataState String
    How the alert should be processed when no data is returned by the underlying series
    outlierId String
    The forecast this alert belongs to.
    threshold String
    The threshold of points over the window that need to be anomalous to alert.
    window String
    How much time to average values over
    title string
    The title of the alert.
    annotations {[key: string]: string}
    Annotations to add to the alert generated in Grafana.
    anomalyCondition string
    The condition for when to consider a point as anomalous.
    for string
    How long values must be anomalous before firing an alert.
    jobId string
    The forecast this alert belongs to.
    labels {[key: string]: string}
    Labels to add to the alert generated in Grafana.
    noDataState string
    How the alert should be processed when no data is returned by the underlying series
    outlierId string
    The forecast this alert belongs to.
    threshold string
    The threshold of points over the window that need to be anomalous to alert.
    window string
    How much time to average values over
    title str
    The title of the alert.
    annotations Mapping[str, str]
    Annotations to add to the alert generated in Grafana.
    anomaly_condition str
    The condition for when to consider a point as anomalous.
    for_ str
    How long values must be anomalous before firing an alert.
    job_id str
    The forecast this alert belongs to.
    labels Mapping[str, str]
    Labels to add to the alert generated in Grafana.
    no_data_state str
    How the alert should be processed when no data is returned by the underlying series
    outlier_id str
    The forecast this alert belongs to.
    threshold str
    The threshold of points over the window that need to be anomalous to alert.
    window str
    How much time to average values over
    title String
    The title of the alert.
    annotations Map<String>
    Annotations to add to the alert generated in Grafana.
    anomalyCondition String
    The condition for when to consider a point as anomalous.
    for String
    How long values must be anomalous before firing an alert.
    jobId String
    The forecast this alert belongs to.
    labels Map<String>
    Labels to add to the alert generated in Grafana.
    noDataState String
    How the alert should be processed when no data is returned by the underlying series
    outlierId String
    The forecast this alert belongs to.
    threshold String
    The threshold of points over the window that need to be anomalous to alert.
    window String
    How much time to average values over

    Outputs

    All input properties are implicitly available as output properties. Additionally, the Alert resource produces the following output properties:

    Id string
    The provider-assigned unique ID for this managed resource.
    Id string
    The provider-assigned unique ID for this managed resource.
    id String
    The provider-assigned unique ID for this managed resource.
    id string
    The provider-assigned unique ID for this managed resource.
    id str
    The provider-assigned unique ID for this managed resource.
    id String
    The provider-assigned unique ID for this managed resource.

    Look up Existing Alert Resource

    Get an existing Alert resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

    public static get(name: string, id: Input<ID>, state?: AlertState, opts?: CustomResourceOptions): Alert
    @staticmethod
    def get(resource_name: str,
            id: str,
            opts: Optional[ResourceOptions] = None,
            annotations: Optional[Mapping[str, str]] = None,
            anomaly_condition: Optional[str] = None,
            for_: Optional[str] = None,
            job_id: Optional[str] = None,
            labels: Optional[Mapping[str, str]] = None,
            no_data_state: Optional[str] = None,
            outlier_id: Optional[str] = None,
            threshold: Optional[str] = None,
            title: Optional[str] = None,
            window: Optional[str] = None) -> Alert
    func GetAlert(ctx *Context, name string, id IDInput, state *AlertState, opts ...ResourceOption) (*Alert, error)
    public static Alert Get(string name, Input<string> id, AlertState? state, CustomResourceOptions? opts = null)
    public static Alert get(String name, Output<String> id, AlertState state, CustomResourceOptions options)
    Resource lookup is not supported in YAML
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    resource_name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    The following state arguments are supported:
    Annotations Dictionary<string, string>
    Annotations to add to the alert generated in Grafana.
    AnomalyCondition string
    The condition for when to consider a point as anomalous.
    For string
    How long values must be anomalous before firing an alert.
    JobId string
    The forecast this alert belongs to.
    Labels Dictionary<string, string>
    Labels to add to the alert generated in Grafana.
    NoDataState string
    How the alert should be processed when no data is returned by the underlying series
    OutlierId string
    The forecast this alert belongs to.
    Threshold string
    The threshold of points over the window that need to be anomalous to alert.
    Title string
    The title of the alert.
    Window string
    How much time to average values over
    Annotations map[string]string
    Annotations to add to the alert generated in Grafana.
    AnomalyCondition string
    The condition for when to consider a point as anomalous.
    For string
    How long values must be anomalous before firing an alert.
    JobId string
    The forecast this alert belongs to.
    Labels map[string]string
    Labels to add to the alert generated in Grafana.
    NoDataState string
    How the alert should be processed when no data is returned by the underlying series
    OutlierId string
    The forecast this alert belongs to.
    Threshold string
    The threshold of points over the window that need to be anomalous to alert.
    Title string
    The title of the alert.
    Window string
    How much time to average values over
    annotations Map<String,String>
    Annotations to add to the alert generated in Grafana.
    anomalyCondition String
    The condition for when to consider a point as anomalous.
    for_ String
    How long values must be anomalous before firing an alert.
    jobId String
    The forecast this alert belongs to.
    labels Map<String,String>
    Labels to add to the alert generated in Grafana.
    noDataState String
    How the alert should be processed when no data is returned by the underlying series
    outlierId String
    The forecast this alert belongs to.
    threshold String
    The threshold of points over the window that need to be anomalous to alert.
    title String
    The title of the alert.
    window String
    How much time to average values over
    annotations {[key: string]: string}
    Annotations to add to the alert generated in Grafana.
    anomalyCondition string
    The condition for when to consider a point as anomalous.
    for string
    How long values must be anomalous before firing an alert.
    jobId string
    The forecast this alert belongs to.
    labels {[key: string]: string}
    Labels to add to the alert generated in Grafana.
    noDataState string
    How the alert should be processed when no data is returned by the underlying series
    outlierId string
    The forecast this alert belongs to.
    threshold string
    The threshold of points over the window that need to be anomalous to alert.
    title string
    The title of the alert.
    window string
    How much time to average values over
    annotations Mapping[str, str]
    Annotations to add to the alert generated in Grafana.
    anomaly_condition str
    The condition for when to consider a point as anomalous.
    for_ str
    How long values must be anomalous before firing an alert.
    job_id str
    The forecast this alert belongs to.
    labels Mapping[str, str]
    Labels to add to the alert generated in Grafana.
    no_data_state str
    How the alert should be processed when no data is returned by the underlying series
    outlier_id str
    The forecast this alert belongs to.
    threshold str
    The threshold of points over the window that need to be anomalous to alert.
    title str
    The title of the alert.
    window str
    How much time to average values over
    annotations Map<String>
    Annotations to add to the alert generated in Grafana.
    anomalyCondition String
    The condition for when to consider a point as anomalous.
    for String
    How long values must be anomalous before firing an alert.
    jobId String
    The forecast this alert belongs to.
    labels Map<String>
    Labels to add to the alert generated in Grafana.
    noDataState String
    How the alert should be processed when no data is returned by the underlying series
    outlierId String
    The forecast this alert belongs to.
    threshold String
    The threshold of points over the window that need to be anomalous to alert.
    title String
    The title of the alert.
    window String
    How much time to average values over

    Import

    $ pulumi import grafana:machineLearning/alert:Alert name "{{ id }}"
    

    To learn more about importing existing cloud resources, see Importing resources.

    Package Details

    Repository
    grafana pulumiverse/pulumi-grafana
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the grafana Terraform Provider.
    grafana logo
    Grafana v0.8.0 published on Monday, Dec 9, 2024 by pulumiverse