grafana.machineLearning.Alert
Explore with Pulumi AI
Example Usage
Forecast Alert
This alert uses a forecast.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const testAlertJob = new grafana.machinelearning.Job("test_alert_job", {
name: "Test Job",
metric: "tf_test_alert_job",
datasourceType: "prometheus",
datasourceUid: "abcd12345",
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
});
const testJobAlert = new grafana.machinelearning.Alert("test_job_alert", {
jobId: testAlertJob.id,
title: "Test Alert",
anomalyCondition: "any",
threshold: ">0.8",
window: "15m",
noDataState: "OK",
});
import pulumi
import pulumiverse_grafana as grafana
test_alert_job = grafana.machine_learning.Job("test_alert_job",
name="Test Job",
metric="tf_test_alert_job",
datasource_type="prometheus",
datasource_uid="abcd12345",
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
})
test_job_alert = grafana.machine_learning.Alert("test_job_alert",
job_id=test_alert_job.id,
title="Test Alert",
anomaly_condition="any",
threshold=">0.8",
window="15m",
no_data_state="OK")
package main
import (
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machineLearning"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
testAlertJob, err := machineLearning.NewJob(ctx, "test_alert_job", &machineLearning.JobArgs{
Name: pulumi.String("Test Job"),
Metric: pulumi.String("tf_test_alert_job"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: pulumi.String("abcd12345"),
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
})
if err != nil {
return err
}
_, err = machineLearning.NewAlert(ctx, "test_job_alert", &machineLearning.AlertArgs{
JobId: testAlertJob.ID(),
Title: pulumi.String("Test Alert"),
AnomalyCondition: pulumi.String("any"),
Threshold: pulumi.String(">0.8"),
Window: pulumi.String("15m"),
NoDataState: pulumi.String("OK"),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var testAlertJob = new Grafana.MachineLearning.Job("test_alert_job", new()
{
Name = "Test Job",
Metric = "tf_test_alert_job",
DatasourceType = "prometheus",
DatasourceUid = "abcd12345",
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
});
var testJobAlert = new Grafana.MachineLearning.Alert("test_job_alert", new()
{
JobId = testAlertJob.Id,
Title = "Test Alert",
AnomalyCondition = "any",
Threshold = ">0.8",
Window = "15m",
NoDataState = "OK",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.machineLearning.Job;
import com.pulumi.grafana.machineLearning.JobArgs;
import com.pulumi.grafana.machineLearning.Alert;
import com.pulumi.grafana.machineLearning.AlertArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var testAlertJob = new Job("testAlertJob", JobArgs.builder()
.name("Test Job")
.metric("tf_test_alert_job")
.datasourceType("prometheus")
.datasourceUid("abcd12345")
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.build());
var testJobAlert = new Alert("testJobAlert", AlertArgs.builder()
.jobId(testAlertJob.id())
.title("Test Alert")
.anomalyCondition("any")
.threshold(">0.8")
.window("15m")
.noDataState("OK")
.build());
}
}
resources:
testAlertJob:
type: grafana:machineLearning:Job
name: test_alert_job
properties:
name: Test Job
metric: tf_test_alert_job
datasourceType: prometheus
datasourceUid: abcd12345
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
testJobAlert:
type: grafana:machineLearning:Alert
name: test_job_alert
properties:
jobId: ${testAlertJob.id}
title: Test Alert
anomalyCondition: any
threshold: '>0.8'
window: 15m
noDataState: OK
Outlier Alert
This alert uses an outlier detector.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const testAlertOutlierDetector = new grafana.machinelearning.OutlierDetector("test_alert_outlier_detector", {
name: "Test Outlier",
metric: "tf_test_alert_outlier",
datasourceType: "prometheus",
datasourceUid: "AbCd12345",
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
interval: 300,
algorithm: {
name: "dbscan",
sensitivity: 0.5,
config: {
epsilon: 1,
},
},
});
const testOutlierAlert = new grafana.machinelearning.Alert("test_outlier_alert", {
outlierId: testAlertOutlierDetector.id,
title: "Test Alert",
window: "1h",
});
import pulumi
import pulumiverse_grafana as grafana
test_alert_outlier_detector = grafana.machine_learning.OutlierDetector("test_alert_outlier_detector",
name="Test Outlier",
metric="tf_test_alert_outlier",
datasource_type="prometheus",
datasource_uid="AbCd12345",
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
},
interval=300,
algorithm={
"name": "dbscan",
"sensitivity": 0.5,
"config": {
"epsilon": 1,
},
})
test_outlier_alert = grafana.machine_learning.Alert("test_outlier_alert",
outlier_id=test_alert_outlier_detector.id,
title="Test Alert",
window="1h")
package main
import (
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machineLearning"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
testAlertOutlierDetector, err := machineLearning.NewOutlierDetector(ctx, "test_alert_outlier_detector", &machineLearning.OutlierDetectorArgs{
Name: pulumi.String("Test Outlier"),
Metric: pulumi.String("tf_test_alert_outlier"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: pulumi.String("AbCd12345"),
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
Interval: pulumi.Int(300),
Algorithm: &machinelearning.OutlierDetectorAlgorithmArgs{
Name: pulumi.String("dbscan"),
Sensitivity: pulumi.Float64(0.5),
Config: &machinelearning.OutlierDetectorAlgorithmConfigArgs{
Epsilon: pulumi.Float64(1),
},
},
})
if err != nil {
return err
}
_, err = machineLearning.NewAlert(ctx, "test_outlier_alert", &machineLearning.AlertArgs{
OutlierId: testAlertOutlierDetector.ID(),
Title: pulumi.String("Test Alert"),
Window: pulumi.String("1h"),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var testAlertOutlierDetector = new Grafana.MachineLearning.OutlierDetector("test_alert_outlier_detector", new()
{
Name = "Test Outlier",
Metric = "tf_test_alert_outlier",
DatasourceType = "prometheus",
DatasourceUid = "AbCd12345",
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
Interval = 300,
Algorithm = new Grafana.MachineLearning.Inputs.OutlierDetectorAlgorithmArgs
{
Name = "dbscan",
Sensitivity = 0.5,
Config = new Grafana.MachineLearning.Inputs.OutlierDetectorAlgorithmConfigArgs
{
Epsilon = 1,
},
},
});
var testOutlierAlert = new Grafana.MachineLearning.Alert("test_outlier_alert", new()
{
OutlierId = testAlertOutlierDetector.Id,
Title = "Test Alert",
Window = "1h",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.machineLearning.OutlierDetector;
import com.pulumi.grafana.machineLearning.OutlierDetectorArgs;
import com.pulumi.grafana.machineLearning.inputs.OutlierDetectorAlgorithmArgs;
import com.pulumi.grafana.machineLearning.inputs.OutlierDetectorAlgorithmConfigArgs;
import com.pulumi.grafana.machineLearning.Alert;
import com.pulumi.grafana.machineLearning.AlertArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var testAlertOutlierDetector = new OutlierDetector("testAlertOutlierDetector", OutlierDetectorArgs.builder()
.name("Test Outlier")
.metric("tf_test_alert_outlier")
.datasourceType("prometheus")
.datasourceUid("AbCd12345")
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.interval(300)
.algorithm(OutlierDetectorAlgorithmArgs.builder()
.name("dbscan")
.sensitivity(0.5)
.config(OutlierDetectorAlgorithmConfigArgs.builder()
.epsilon(1)
.build())
.build())
.build());
var testOutlierAlert = new Alert("testOutlierAlert", AlertArgs.builder()
.outlierId(testAlertOutlierDetector.id())
.title("Test Alert")
.window("1h")
.build());
}
}
resources:
testAlertOutlierDetector:
type: grafana:machineLearning:OutlierDetector
name: test_alert_outlier_detector
properties:
name: Test Outlier
metric: tf_test_alert_outlier
datasourceType: prometheus
datasourceUid: AbCd12345
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
interval: 300
algorithm:
name: dbscan
sensitivity: 0.5
config:
epsilon: 1
testOutlierAlert:
type: grafana:machineLearning:Alert
name: test_outlier_alert
properties:
outlierId: ${testAlertOutlierDetector.id}
title: Test Alert
window: 1h
Create Alert Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Alert(name: string, args: AlertArgs, opts?: CustomResourceOptions);
@overload
def Alert(resource_name: str,
args: AlertArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Alert(resource_name: str,
opts: Optional[ResourceOptions] = None,
title: Optional[str] = None,
annotations: Optional[Mapping[str, str]] = None,
anomaly_condition: Optional[str] = None,
for_: Optional[str] = None,
job_id: Optional[str] = None,
labels: Optional[Mapping[str, str]] = None,
no_data_state: Optional[str] = None,
outlier_id: Optional[str] = None,
threshold: Optional[str] = None,
window: Optional[str] = None)
func NewAlert(ctx *Context, name string, args AlertArgs, opts ...ResourceOption) (*Alert, error)
public Alert(string name, AlertArgs args, CustomResourceOptions? opts = null)
type: grafana:machineLearning:Alert
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args AlertArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AlertArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AlertArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AlertArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AlertArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var alertResource = new Grafana.MachineLearning.Alert("alertResource", new()
{
Title = "string",
Annotations =
{
{ "string", "string" },
},
AnomalyCondition = "string",
For = "string",
JobId = "string",
Labels =
{
{ "string", "string" },
},
NoDataState = "string",
OutlierId = "string",
Threshold = "string",
Window = "string",
});
example, err := machineLearning.NewAlert(ctx, "alertResource", &machineLearning.AlertArgs{
Title: pulumi.String("string"),
Annotations: pulumi.StringMap{
"string": pulumi.String("string"),
},
AnomalyCondition: pulumi.String("string"),
For: pulumi.String("string"),
JobId: pulumi.String("string"),
Labels: pulumi.StringMap{
"string": pulumi.String("string"),
},
NoDataState: pulumi.String("string"),
OutlierId: pulumi.String("string"),
Threshold: pulumi.String("string"),
Window: pulumi.String("string"),
})
var alertResource = new Alert("alertResource", AlertArgs.builder()
.title("string")
.annotations(Map.of("string", "string"))
.anomalyCondition("string")
.for_("string")
.jobId("string")
.labels(Map.of("string", "string"))
.noDataState("string")
.outlierId("string")
.threshold("string")
.window("string")
.build());
alert_resource = grafana.machine_learning.Alert("alertResource",
title="string",
annotations={
"string": "string",
},
anomaly_condition="string",
for_="string",
job_id="string",
labels={
"string": "string",
},
no_data_state="string",
outlier_id="string",
threshold="string",
window="string")
const alertResource = new grafana.machinelearning.Alert("alertResource", {
title: "string",
annotations: {
string: "string",
},
anomalyCondition: "string",
"for": "string",
jobId: "string",
labels: {
string: "string",
},
noDataState: "string",
outlierId: "string",
threshold: "string",
window: "string",
});
type: grafana:machineLearning:Alert
properties:
annotations:
string: string
anomalyCondition: string
for: string
jobId: string
labels:
string: string
noDataState: string
outlierId: string
threshold: string
title: string
window: string
Alert Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Alert resource accepts the following input properties:
- Title string
- The title of the alert.
- Annotations Dictionary<string, string>
- Annotations to add to the alert generated in Grafana.
- Anomaly
Condition string - The condition for when to consider a point as anomalous.
- For string
- How long values must be anomalous before firing an alert.
- Job
Id string - The forecast this alert belongs to.
- Labels Dictionary<string, string>
- Labels to add to the alert generated in Grafana.
- No
Data stringState - How the alert should be processed when no data is returned by the underlying series
- Outlier
Id string - The forecast this alert belongs to.
- Threshold string
- The threshold of points over the window that need to be anomalous to alert.
- Window string
- How much time to average values over
- Title string
- The title of the alert.
- Annotations map[string]string
- Annotations to add to the alert generated in Grafana.
- Anomaly
Condition string - The condition for when to consider a point as anomalous.
- For string
- How long values must be anomalous before firing an alert.
- Job
Id string - The forecast this alert belongs to.
- Labels map[string]string
- Labels to add to the alert generated in Grafana.
- No
Data stringState - How the alert should be processed when no data is returned by the underlying series
- Outlier
Id string - The forecast this alert belongs to.
- Threshold string
- The threshold of points over the window that need to be anomalous to alert.
- Window string
- How much time to average values over
- title String
- The title of the alert.
- annotations Map<String,String>
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition String - The condition for when to consider a point as anomalous.
- for_ String
- How long values must be anomalous before firing an alert.
- job
Id String - The forecast this alert belongs to.
- labels Map<String,String>
- Labels to add to the alert generated in Grafana.
- no
Data StringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id String - The forecast this alert belongs to.
- threshold String
- The threshold of points over the window that need to be anomalous to alert.
- window String
- How much time to average values over
- title string
- The title of the alert.
- annotations {[key: string]: string}
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition string - The condition for when to consider a point as anomalous.
- for string
- How long values must be anomalous before firing an alert.
- job
Id string - The forecast this alert belongs to.
- labels {[key: string]: string}
- Labels to add to the alert generated in Grafana.
- no
Data stringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id string - The forecast this alert belongs to.
- threshold string
- The threshold of points over the window that need to be anomalous to alert.
- window string
- How much time to average values over
- title str
- The title of the alert.
- annotations Mapping[str, str]
- Annotations to add to the alert generated in Grafana.
- anomaly_
condition str - The condition for when to consider a point as anomalous.
- for_ str
- How long values must be anomalous before firing an alert.
- job_
id str - The forecast this alert belongs to.
- labels Mapping[str, str]
- Labels to add to the alert generated in Grafana.
- no_
data_ strstate - How the alert should be processed when no data is returned by the underlying series
- outlier_
id str - The forecast this alert belongs to.
- threshold str
- The threshold of points over the window that need to be anomalous to alert.
- window str
- How much time to average values over
- title String
- The title of the alert.
- annotations Map<String>
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition String - The condition for when to consider a point as anomalous.
- for String
- How long values must be anomalous before firing an alert.
- job
Id String - The forecast this alert belongs to.
- labels Map<String>
- Labels to add to the alert generated in Grafana.
- no
Data StringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id String - The forecast this alert belongs to.
- threshold String
- The threshold of points over the window that need to be anomalous to alert.
- window String
- How much time to average values over
Outputs
All input properties are implicitly available as output properties. Additionally, the Alert resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Look up Existing Alert Resource
Get an existing Alert resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: AlertState, opts?: CustomResourceOptions): Alert
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
annotations: Optional[Mapping[str, str]] = None,
anomaly_condition: Optional[str] = None,
for_: Optional[str] = None,
job_id: Optional[str] = None,
labels: Optional[Mapping[str, str]] = None,
no_data_state: Optional[str] = None,
outlier_id: Optional[str] = None,
threshold: Optional[str] = None,
title: Optional[str] = None,
window: Optional[str] = None) -> Alert
func GetAlert(ctx *Context, name string, id IDInput, state *AlertState, opts ...ResourceOption) (*Alert, error)
public static Alert Get(string name, Input<string> id, AlertState? state, CustomResourceOptions? opts = null)
public static Alert get(String name, Output<String> id, AlertState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Annotations Dictionary<string, string>
- Annotations to add to the alert generated in Grafana.
- Anomaly
Condition string - The condition for when to consider a point as anomalous.
- For string
- How long values must be anomalous before firing an alert.
- Job
Id string - The forecast this alert belongs to.
- Labels Dictionary<string, string>
- Labels to add to the alert generated in Grafana.
- No
Data stringState - How the alert should be processed when no data is returned by the underlying series
- Outlier
Id string - The forecast this alert belongs to.
- Threshold string
- The threshold of points over the window that need to be anomalous to alert.
- Title string
- The title of the alert.
- Window string
- How much time to average values over
- Annotations map[string]string
- Annotations to add to the alert generated in Grafana.
- Anomaly
Condition string - The condition for when to consider a point as anomalous.
- For string
- How long values must be anomalous before firing an alert.
- Job
Id string - The forecast this alert belongs to.
- Labels map[string]string
- Labels to add to the alert generated in Grafana.
- No
Data stringState - How the alert should be processed when no data is returned by the underlying series
- Outlier
Id string - The forecast this alert belongs to.
- Threshold string
- The threshold of points over the window that need to be anomalous to alert.
- Title string
- The title of the alert.
- Window string
- How much time to average values over
- annotations Map<String,String>
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition String - The condition for when to consider a point as anomalous.
- for_ String
- How long values must be anomalous before firing an alert.
- job
Id String - The forecast this alert belongs to.
- labels Map<String,String>
- Labels to add to the alert generated in Grafana.
- no
Data StringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id String - The forecast this alert belongs to.
- threshold String
- The threshold of points over the window that need to be anomalous to alert.
- title String
- The title of the alert.
- window String
- How much time to average values over
- annotations {[key: string]: string}
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition string - The condition for when to consider a point as anomalous.
- for string
- How long values must be anomalous before firing an alert.
- job
Id string - The forecast this alert belongs to.
- labels {[key: string]: string}
- Labels to add to the alert generated in Grafana.
- no
Data stringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id string - The forecast this alert belongs to.
- threshold string
- The threshold of points over the window that need to be anomalous to alert.
- title string
- The title of the alert.
- window string
- How much time to average values over
- annotations Mapping[str, str]
- Annotations to add to the alert generated in Grafana.
- anomaly_
condition str - The condition for when to consider a point as anomalous.
- for_ str
- How long values must be anomalous before firing an alert.
- job_
id str - The forecast this alert belongs to.
- labels Mapping[str, str]
- Labels to add to the alert generated in Grafana.
- no_
data_ strstate - How the alert should be processed when no data is returned by the underlying series
- outlier_
id str - The forecast this alert belongs to.
- threshold str
- The threshold of points over the window that need to be anomalous to alert.
- title str
- The title of the alert.
- window str
- How much time to average values over
- annotations Map<String>
- Annotations to add to the alert generated in Grafana.
- anomaly
Condition String - The condition for when to consider a point as anomalous.
- for String
- How long values must be anomalous before firing an alert.
- job
Id String - The forecast this alert belongs to.
- labels Map<String>
- Labels to add to the alert generated in Grafana.
- no
Data StringState - How the alert should be processed when no data is returned by the underlying series
- outlier
Id String - The forecast this alert belongs to.
- threshold String
- The threshold of points over the window that need to be anomalous to alert.
- title String
- The title of the alert.
- window String
- How much time to average values over
Import
$ pulumi import grafana:machineLearning/alert:Alert name "{{ id }}"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- grafana pulumiverse/pulumi-grafana
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
grafana
Terraform Provider.