grafana.MachineLearningOutlierDetector

Explore with Pulumi AI

An outlier detector monitors the results of a query and reports when its values are outside normal bands.

The normal band is configured by choice of algorithm, its sensitivity and other configuration.

Visit https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for more details.

Create MachineLearningOutlierDetector Resource

new MachineLearningOutlierDetector(name: string, args: MachineLearningOutlierDetectorArgs, opts?: CustomResourceOptions);
@overload
def MachineLearningOutlierDetector(resource_name: str,
                                   opts: Optional[ResourceOptions] = None,
                                   algorithm: Optional[MachineLearningOutlierDetectorAlgorithmArgs] = None,
                                   datasource_id: Optional[int] = None,
                                   datasource_type: Optional[str] = None,
                                   datasource_uid: Optional[str] = None,
                                   description: Optional[str] = None,
                                   interval: Optional[int] = None,
                                   metric: Optional[str] = None,
                                   name: Optional[str] = None,
                                   query_params: Optional[Mapping[str, Any]] = None)
@overload
def MachineLearningOutlierDetector(resource_name: str,
                                   args: MachineLearningOutlierDetectorArgs,
                                   opts: Optional[ResourceOptions] = None)
func NewMachineLearningOutlierDetector(ctx *Context, name string, args MachineLearningOutlierDetectorArgs, opts ...ResourceOption) (*MachineLearningOutlierDetector, error)
public MachineLearningOutlierDetector(string name, MachineLearningOutlierDetectorArgs args, CustomResourceOptions? opts = null)
public MachineLearningOutlierDetector(String name, MachineLearningOutlierDetectorArgs args)
public MachineLearningOutlierDetector(String name, MachineLearningOutlierDetectorArgs args, CustomResourceOptions options)
type: grafana:MachineLearningOutlierDetector
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.

name string
The unique name of the resource.
args MachineLearningOutlierDetectorArgs
The arguments to resource properties.
opts CustomResourceOptions
Bag of options to control resource's behavior.
resource_name str
The unique name of the resource.
args MachineLearningOutlierDetectorArgs
The arguments to resource properties.
opts ResourceOptions
Bag of options to control resource's behavior.
ctx Context
Context object for the current deployment.
name string
The unique name of the resource.
args MachineLearningOutlierDetectorArgs
The arguments to resource properties.
opts ResourceOption
Bag of options to control resource's behavior.
name string
The unique name of the resource.
args MachineLearningOutlierDetectorArgs
The arguments to resource properties.
opts CustomResourceOptions
Bag of options to control resource's behavior.
name String
The unique name of the resource.
args MachineLearningOutlierDetectorArgs
The arguments to resource properties.
options CustomResourceOptions
Bag of options to control resource's behavior.

MachineLearningOutlierDetector Resource Properties

To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

Inputs

The MachineLearningOutlierDetector resource accepts the following input properties:

Algorithm Lbrlabs.PulumiPackage.Grafana.Inputs.MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

DatasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

Metric string

The metric used to query the outlier detector results.

QueryParams Dictionary<string, object>

An object representing the query params to query Grafana with.

DatasourceId int

The id of the datasource to query.

DatasourceUid string

The uid of the datasource to query.

Description string

A description of the outlier detector.

Interval int

The data interval in seconds to monitor. Defaults to 300.

Name string

The name of the outlier detector.

Algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

DatasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

Metric string

The metric used to query the outlier detector results.

QueryParams map[string]interface{}

An object representing the query params to query Grafana with.

DatasourceId int

The id of the datasource to query.

DatasourceUid string

The uid of the datasource to query.

Description string

A description of the outlier detector.

Interval int

The data interval in seconds to monitor. Defaults to 300.

Name string

The name of the outlier detector.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceType String

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

metric String

The metric used to query the outlier detector results.

queryParams Map<String,Object>

An object representing the query params to query Grafana with.

datasourceId Integer

The id of the datasource to query.

datasourceUid String

The uid of the datasource to query.

description String

A description of the outlier detector.

interval Integer

The data interval in seconds to monitor. Defaults to 300.

name String

The name of the outlier detector.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

metric string

The metric used to query the outlier detector results.

queryParams {[key: string]: any}

An object representing the query params to query Grafana with.

datasourceId number

The id of the datasource to query.

datasourceUid string

The uid of the datasource to query.

description string

A description of the outlier detector.

interval number

The data interval in seconds to monitor. Defaults to 300.

name string

The name of the outlier detector.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasource_type str

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

metric str

The metric used to query the outlier detector results.

query_params Mapping[str, Any]

An object representing the query params to query Grafana with.

datasource_id int

The id of the datasource to query.

datasource_uid str

The uid of the datasource to query.

description str

A description of the outlier detector.

interval int

The data interval in seconds to monitor. Defaults to 300.

name str

The name of the outlier detector.

algorithm Property Map

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceType String

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

metric String

The metric used to query the outlier detector results.

queryParams Map<Any>

An object representing the query params to query Grafana with.

datasourceId Number

The id of the datasource to query.

datasourceUid String

The uid of the datasource to query.

description String

A description of the outlier detector.

interval Number

The data interval in seconds to monitor. Defaults to 300.

name String

The name of the outlier detector.

Outputs

All input properties are implicitly available as output properties. Additionally, the MachineLearningOutlierDetector resource produces the following output properties:

Id string

The provider-assigned unique ID for this managed resource.

Id string

The provider-assigned unique ID for this managed resource.

id String

The provider-assigned unique ID for this managed resource.

id string

The provider-assigned unique ID for this managed resource.

id str

The provider-assigned unique ID for this managed resource.

id String

The provider-assigned unique ID for this managed resource.

Look up Existing MachineLearningOutlierDetector Resource

Get an existing MachineLearningOutlierDetector resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

public static get(name: string, id: Input<ID>, state?: MachineLearningOutlierDetectorState, opts?: CustomResourceOptions): MachineLearningOutlierDetector
@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        algorithm: Optional[MachineLearningOutlierDetectorAlgorithmArgs] = None,
        datasource_id: Optional[int] = None,
        datasource_type: Optional[str] = None,
        datasource_uid: Optional[str] = None,
        description: Optional[str] = None,
        interval: Optional[int] = None,
        metric: Optional[str] = None,
        name: Optional[str] = None,
        query_params: Optional[Mapping[str, Any]] = None) -> MachineLearningOutlierDetector
func GetMachineLearningOutlierDetector(ctx *Context, name string, id IDInput, state *MachineLearningOutlierDetectorState, opts ...ResourceOption) (*MachineLearningOutlierDetector, error)
public static MachineLearningOutlierDetector Get(string name, Input<string> id, MachineLearningOutlierDetectorState? state, CustomResourceOptions? opts = null)
public static MachineLearningOutlierDetector get(String name, Output<String> id, MachineLearningOutlierDetectorState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
name
The unique name of the resulting resource.
id
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
resource_name
The unique name of the resulting resource.
id
The unique provider ID of the resource to lookup.
name
The unique name of the resulting resource.
id
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
name
The unique name of the resulting resource.
id
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
name
The unique name of the resulting resource.
id
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
The following state arguments are supported:
Algorithm Lbrlabs.PulumiPackage.Grafana.Inputs.MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

DatasourceId int

The id of the datasource to query.

DatasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

DatasourceUid string

The uid of the datasource to query.

Description string

A description of the outlier detector.

Interval int

The data interval in seconds to monitor. Defaults to 300.

Metric string

The metric used to query the outlier detector results.

Name string

The name of the outlier detector.

QueryParams Dictionary<string, object>

An object representing the query params to query Grafana with.

Algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

DatasourceId int

The id of the datasource to query.

DatasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

DatasourceUid string

The uid of the datasource to query.

Description string

A description of the outlier detector.

Interval int

The data interval in seconds to monitor. Defaults to 300.

Metric string

The metric used to query the outlier detector results.

Name string

The name of the outlier detector.

QueryParams map[string]interface{}

An object representing the query params to query Grafana with.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceId Integer

The id of the datasource to query.

datasourceType String

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

datasourceUid String

The uid of the datasource to query.

description String

A description of the outlier detector.

interval Integer

The data interval in seconds to monitor. Defaults to 300.

metric String

The metric used to query the outlier detector results.

name String

The name of the outlier detector.

queryParams Map<String,Object>

An object representing the query params to query Grafana with.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceId number

The id of the datasource to query.

datasourceType string

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

datasourceUid string

The uid of the datasource to query.

description string

A description of the outlier detector.

interval number

The data interval in seconds to monitor. Defaults to 300.

metric string

The metric used to query the outlier detector results.

name string

The name of the outlier detector.

queryParams {[key: string]: any}

An object representing the query params to query Grafana with.

algorithm MachineLearningOutlierDetectorAlgorithmArgs

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasource_id int

The id of the datasource to query.

datasource_type str

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

datasource_uid str

The uid of the datasource to query.

description str

A description of the outlier detector.

interval int

The data interval in seconds to monitor. Defaults to 300.

metric str

The metric used to query the outlier detector results.

name str

The name of the outlier detector.

query_params Mapping[str, Any]

An object representing the query params to query Grafana with.

algorithm Property Map

The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.

datasourceId Number

The id of the datasource to query.

datasourceType String

The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.

datasourceUid String

The uid of the datasource to query.

description String

A description of the outlier detector.

interval Number

The data interval in seconds to monitor. Defaults to 300.

metric String

The metric used to query the outlier detector results.

name String

The name of the outlier detector.

queryParams Map<Any>

An object representing the query params to query Grafana with.

Supporting Types

MachineLearningOutlierDetectorAlgorithm

Name string

The name of the algorithm to use ('mad' or 'dbscan').

Sensitivity double

Specify the sensitivity of the detector (in range [0,1]).

Config Lbrlabs.PulumiPackage.Grafana.Inputs.MachineLearningOutlierDetectorAlgorithmConfig

For DBSCAN only, specify the configuration map

Name string

The name of the algorithm to use ('mad' or 'dbscan').

Sensitivity float64

Specify the sensitivity of the detector (in range [0,1]).

Config MachineLearningOutlierDetectorAlgorithmConfig

For DBSCAN only, specify the configuration map

name String

The name of the algorithm to use ('mad' or 'dbscan').

sensitivity Double

Specify the sensitivity of the detector (in range [0,1]).

config MachineLearningOutlierDetectorAlgorithmConfig

For DBSCAN only, specify the configuration map

name string

The name of the algorithm to use ('mad' or 'dbscan').

sensitivity number

Specify the sensitivity of the detector (in range [0,1]).

config MachineLearningOutlierDetectorAlgorithmConfig

For DBSCAN only, specify the configuration map

name str

The name of the algorithm to use ('mad' or 'dbscan').

sensitivity float

Specify the sensitivity of the detector (in range [0,1]).

config MachineLearningOutlierDetectorAlgorithmConfig

For DBSCAN only, specify the configuration map

name String

The name of the algorithm to use ('mad' or 'dbscan').

sensitivity Number

Specify the sensitivity of the detector (in range [0,1]).

config Property Map

For DBSCAN only, specify the configuration map

MachineLearningOutlierDetectorAlgorithmConfig

Epsilon double
Epsilon float64
epsilon Double
epsilon number
epsilon float
epsilon Number

Package Details

Repository
grafana lbrlabs/pulumi-grafana
License
Apache-2.0
Notes

This Pulumi package is based on the grafana Terraform Provider.