kubernetes.apps/v1beta2.DaemonSet
Explore with Pulumi AI
DaemonSet represents the configuration of a daemon set.
Create DaemonSet Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new DaemonSet(name: string, args?: DaemonSet, opts?: CustomResourceOptions);
@overload
def DaemonSet(resource_name: str,
args: Optional[DaemonSetInitArgs] = None,
opts: Optional[ResourceOptions] = None)
@overload
def DaemonSet(resource_name: str,
opts: Optional[ResourceOptions] = None,
metadata: Optional[_meta.v1.ObjectMetaArgs] = None,
spec: Optional[DaemonSetSpecArgs] = None)
func NewDaemonSet(ctx *Context, name string, args *DaemonSetArgs, opts ...ResourceOption) (*DaemonSet, error)
public DaemonSet(string name, DaemonSetArgs? args = null, CustomResourceOptions? opts = null)
public DaemonSet(String name, DaemonSetArgs args)
public DaemonSet(String name, DaemonSetArgs args, CustomResourceOptions options)
type: kubernetes:apps/v1beta2:DaemonSet
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args DaemonSet
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args DaemonSetInitArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args DaemonSetArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args DaemonSetArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args DaemonSetArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
DaemonSet Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The DaemonSet resource accepts the following input properties:
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta - Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Spec
Daemon
Set Spec - The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- Metadata
Object
Meta Args - Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Spec
Daemon
Set Spec Args - The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
Object
Meta - Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- spec
Daemon
Set Spec - The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
meta.v1.
Object Meta - Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- spec
Daemon
Set Spec - The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
meta.v1.
Object Meta Args - Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- spec
Daemon
Set Spec Args - The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata Property Map
- Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- spec Property Map
- The desired behavior of this daemon set. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
Outputs
All input properties are implicitly available as output properties. Additionally, the DaemonSet resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Daemon
Set Status - The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- Id string
- The provider-assigned unique ID for this managed resource.
- Status
Daemon
Set Status - The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id String
- The provider-assigned unique ID for this managed resource.
- status
Daemon
Set Status - The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id string
- The provider-assigned unique ID for this managed resource.
- status
Daemon
Set Status - The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id str
- The provider-assigned unique ID for this managed resource.
- status
Daemon
Set Status - The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- id String
- The provider-assigned unique ID for this managed resource.
- status Property Map
- The current status of this daemon set. This data may be out of date by some window of time. Populated by the system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
Supporting Types
AWSElasticBlockStoreVolumeSource, AWSElasticBlockStoreVolumeSourceArgs
- Volume
ID string - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- Read
Only bool - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Volume
ID string - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- Read
Only bool - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID String - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type String - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition Integer
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only Boolean - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID string - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition number
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only boolean - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume_
id str - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs_
type str - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read_
only bool - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID String - volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type String - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition Number
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only Boolean - readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
Affinity, AffinityArgs
- Node
Affinity Pulumi.Kubernetes. Core. V1. Inputs. Node Affinity - Describes node affinity scheduling rules for the pod.
- Pod
Affinity Pulumi.Kubernetes. Core. V1. Inputs. Pod Affinity - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- Pod
Anti Pulumi.Affinity Kubernetes. Core. V1. Inputs. Pod Anti Affinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- Node
Affinity NodeAffinity - Describes node affinity scheduling rules for the pod.
- Pod
Affinity PodAffinity - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- Pod
Anti PodAffinity Anti Affinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity NodeAffinity - Describes node affinity scheduling rules for the pod.
- pod
Affinity PodAffinity - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti PodAffinity Anti Affinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity core.v1.Node Affinity - Describes node affinity scheduling rules for the pod.
- pod
Affinity core.v1.Pod Affinity - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti core.v1.Affinity Pod Anti Affinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node_
affinity core.v1.Node Affinity - Describes node affinity scheduling rules for the pod.
- pod_
affinity core.v1.Pod Affinity - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod_
anti_ core.v1.affinity Pod Anti Affinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity Property Map - Describes node affinity scheduling rules for the pod.
- pod
Affinity Property Map - Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti Property MapAffinity - Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
AppArmorProfile, AppArmorProfileArgs
- Type string
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- Localhost
Profile string - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
- Type string
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- Localhost
Profile string - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
- type String
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- localhost
Profile String - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
- type string
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- localhost
Profile string - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
- type str
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- localhost_
profile str - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
- type String
- type indicates which kind of AppArmor profile will be applied. Valid options are: Localhost - a profile pre-loaded on the node. RuntimeDefault - the container runtime's default profile. Unconfined - no AppArmor enforcement.
- localhost
Profile String - localhostProfile indicates a profile loaded on the node that should be used. The profile must be preconfigured on the node to work. Must match the loaded name of the profile. Must be set if and only if type is "Localhost".
AzureDiskVolumeSource, AzureDiskVolumeSourceArgs
- Disk
Name string - diskName is the Name of the data disk in the blob storage
- Disk
URI string - diskURI is the URI of data disk in the blob storage
- Caching
Mode string - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- Fs
Type string - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Kind string
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- Read
Only bool - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Disk
Name string - diskName is the Name of the data disk in the blob storage
- Disk
URI string - diskURI is the URI of data disk in the blob storage
- Caching
Mode string - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- Fs
Type string - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Kind string
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- Read
Only bool - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name String - diskName is the Name of the data disk in the blob storage
- disk
URI String - diskURI is the URI of data disk in the blob storage
- caching
Mode String - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type String - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind String
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only Boolean - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name string - diskName is the Name of the data disk in the blob storage
- disk
URI string - diskURI is the URI of data disk in the blob storage
- caching
Mode string - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type string - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind string
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only boolean - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk_
name str - diskName is the Name of the data disk in the blob storage
- disk_
uri str - diskURI is the URI of data disk in the blob storage
- caching_
mode str - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs_
type str - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind str
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read_
only bool - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name String - diskName is the Name of the data disk in the blob storage
- disk
URI String - diskURI is the URI of data disk in the blob storage
- caching
Mode String - cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type String - fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind String
- kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only Boolean - readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
AzureFileVolumeSource, AzureFileVolumeSourceArgs
- Secret
Name string - secretName is the name of secret that contains Azure Storage Account Name and Key
- string
- shareName is the azure share Name
- Read
Only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Name string - secretName is the name of secret that contains Azure Storage Account Name and Key
- string
- shareName is the azure share Name
- Read
Only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name String - secretName is the name of secret that contains Azure Storage Account Name and Key
- String
- shareName is the azure share Name
- read
Only Boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name string - secretName is the name of secret that contains Azure Storage Account Name and Key
- string
- shareName is the azure share Name
- read
Only boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret_
name str - secretName is the name of secret that contains Azure Storage Account Name and Key
- str
- shareName is the azure share Name
- read_
only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name String - secretName is the name of secret that contains Azure Storage Account Name and Key
- String
- shareName is the azure share Name
- read
Only Boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
CSIVolumeSource, CSIVolumeSourceArgs
- Driver string
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- Fs
Type string - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- Node
Publish Pulumi.Secret Ref Kubernetes. Core. V1. Inputs. Local Object Reference - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- Read
Only bool - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Attributes Dictionary<string, string> - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- Driver string
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- Fs
Type string - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- Node
Publish LocalSecret Ref Object Reference - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- Read
Only bool - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Attributes map[string]string - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver String
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type String - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish LocalSecret Ref Object Reference - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only Boolean - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes Map<String,String> - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver string
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type string - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish core.v1.Secret Ref Local Object Reference - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only boolean - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes {[key: string]: string} - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver str
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs_
type str - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node_
publish_ core.v1.secret_ ref Local Object Reference - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read_
only bool - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume_
attributes Mapping[str, str] - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver String
- driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type String - fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish Property MapSecret Ref - nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only Boolean - readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes Map<String> - volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
Capabilities, CapabilitiesArgs
CephFSVolumeSource, CephFSVolumeSourceArgs
- Monitors List<string>
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Path string
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- Read
Only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
File string - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
Ref Pulumi.Kubernetes. Core. V1. Inputs. Local Object Reference - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- User string
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Monitors []string
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Path string
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- Read
Only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
File string - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
Ref LocalObject Reference - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- User string
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors List<String>
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path String
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only Boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File String - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref LocalObject Reference - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user String
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors string[]
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path string
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File string - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref core.v1.Local Object Reference - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user string
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors Sequence[str]
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path str
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read_
only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret_
file str - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret_
ref core.v1.Local Object Reference - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user str
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors List<String>
- monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path String
- path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only Boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File String - secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref Property Map - secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user String
- user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
CinderVolumeSource, CinderVolumeSourceArgs
- Volume
ID string - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Read
Only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Secret
Ref Pulumi.Kubernetes. Core. V1. Inputs. Local Object Reference - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- Volume
ID string - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Read
Only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Secret
Ref LocalObject Reference - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID String - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only Boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref LocalObject Reference - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID string - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref core.v1.Local Object Reference - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume_
id str - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs_
type str - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read_
only bool - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret_
ref core.v1.Local Object Reference - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID String - volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only Boolean - readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref Property Map - secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
ClaimSource, ClaimSourceArgs
- Resource
Claim stringName - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- Resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- Resource
Claim stringName - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- Resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim StringName - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim StringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim stringName - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource_
claim_ strname - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource_
claim_ strtemplate_ name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim StringName - ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim StringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The name of the ResourceClaim will be -, where is the PodResourceClaim.Name. Pod validation will reject the pod if the concatenated name is not valid for a ResourceClaim (e.g. too long).
An existing ResourceClaim with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated resource by mistake. Scheduling and pod startup are then blocked until the unrelated ResourceClaim is removed.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
ClusterTrustBundleProjection, ClusterTrustBundleProjectionArgs
- Path string
- Relative path from the volume root to write the bundle.
- Label
Selector Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- Name string
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- Optional bool
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- Signer
Name string - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
- Path string
- Relative path from the volume root to write the bundle.
- Label
Selector LabelSelector - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- Name string
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- Optional bool
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- Signer
Name string - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
- path String
- Relative path from the volume root to write the bundle.
- label
Selector LabelSelector - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- name String
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- optional Boolean
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- signer
Name String - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
- path string
- Relative path from the volume root to write the bundle.
- label
Selector meta.v1.Label Selector - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- name string
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- optional boolean
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- signer
Name string - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
- path str
- Relative path from the volume root to write the bundle.
- label_
selector meta.v1.Label Selector - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- name str
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- optional bool
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- signer_
name str - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
- path String
- Relative path from the volume root to write the bundle.
- label
Selector Property Map - Select all ClusterTrustBundles that match this label selector. Only has effect if signerName is set. Mutually-exclusive with name. If unset, interpreted as "match nothing". If set but empty, interpreted as "match everything".
- name String
- Select a single ClusterTrustBundle by object name. Mutually-exclusive with signerName and labelSelector.
- optional Boolean
- If true, don't block pod startup if the referenced ClusterTrustBundle(s) aren't available. If using name, then the named ClusterTrustBundle is allowed not to exist. If using signerName, then the combination of signerName and labelSelector is allowed to match zero ClusterTrustBundles.
- signer
Name String - Select all ClusterTrustBundles that match this signer name. Mutually-exclusive with name. The contents of all selected ClusterTrustBundles will be unified and deduplicated.
ConfigMapEnvSource, ConfigMapEnvSourceArgs
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- Specify whether the ConfigMap must be defined
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- Specify whether the ConfigMap must be defined
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- Specify whether the ConfigMap must be defined
- name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
- Specify whether the ConfigMap must be defined
- name str
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
- Specify whether the ConfigMap must be defined
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- Specify whether the ConfigMap must be defined
ConfigMapKeySelector, ConfigMapKeySelectorArgs
- Key string
- The key to select.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- Specify whether the ConfigMap or its key must be defined
- Key string
- The key to select.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- Specify whether the ConfigMap or its key must be defined
- key String
- The key to select.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- Specify whether the ConfigMap or its key must be defined
- key string
- The key to select.
- name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
- Specify whether the ConfigMap or its key must be defined
- key str
- The key to select.
- name str
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
- Specify whether the ConfigMap or its key must be defined
- key String
- The key to select.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- Specify whether the ConfigMap or its key must be defined
ConfigMapProjection, ConfigMapProjectionArgs
- Items
List<Pulumi.
Kubernetes. Core. V1. Inputs. Key To Path> - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- optional specify whether the ConfigMap or its keys must be defined
- Items
Key
To Path - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- optional specify whether the ConfigMap or its keys must be defined
- items
List<Key
To Path> - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- optional specify whether the ConfigMap or its keys must be defined
- items
core.v1.
Key To Path[] - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
- optional specify whether the ConfigMap or its keys must be defined
- items
Sequence[core.v1.
Key To Path] - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name str
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
- optional specify whether the ConfigMap or its keys must be defined
- items List<Property Map>
- items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- optional specify whether the ConfigMap or its keys must be defined
ConfigMapVolumeSource, ConfigMapVolumeSourceArgs
- Default
Mode int - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
List<Pulumi.
Kubernetes. Core. V1. Inputs. Key To Path> - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- optional specify whether the ConfigMap or its keys must be defined
- Default
Mode int - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
Key
To Path - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
- optional specify whether the ConfigMap or its keys must be defined
- default
Mode Integer - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
List<Key
To Path> - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- optional specify whether the ConfigMap or its keys must be defined
- default
Mode number - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
core.v1.
Key To Path[] - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
- optional specify whether the ConfigMap or its keys must be defined
- default_
mode int - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Sequence[core.v1.
Key To Path] - items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name str
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
- optional specify whether the ConfigMap or its keys must be defined
- default
Mode Number - defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items List<Property Map>
- items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
- optional specify whether the ConfigMap or its keys must be defined
Container, ContainerArgs
- Name string
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- Args List<string>
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command List<string>
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
List<Pulumi.
Kubernetes. Core. V1. Inputs. Env Var> - List of environment variables to set in the container. Cannot be updated.
- Env
From List<Pulumi.Kubernetes. Core. V1. Inputs. Env From Source> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- Image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle
Pulumi.
Kubernetes. Core. V1. Inputs. Lifecycle - Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- Liveness
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Ports
List<Pulumi.
Kubernetes. Core. V1. Inputs. Container Port> - List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- Readiness
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Resize
Policy List<Pulumi.Kubernetes. Core. V1. Inputs. Container Resize Policy> - Resources resize policy for the container.
- Resources
Pulumi.
Kubernetes. Core. V1. Inputs. Resource Requirements - Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- Restart
Policy string - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- Security
Context Pulumi.Kubernetes. Core. V1. Inputs. Security Context - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- Startup
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices List<Pulumi.Kubernetes. Core. V1. Inputs. Volume Device> - volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts List<Pulumi.Kubernetes. Core. V1. Inputs. Volume Mount> - Pod volumes to mount into the container's filesystem. Cannot be updated.
- Working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- Name string
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- Args []string
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command []string
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
Env
Var - List of environment variables to set in the container. Cannot be updated.
- Env
From EnvFrom Source - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- Image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
- Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- Liveness
Probe Probe - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Ports
Container
Port - List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- Readiness
Probe Probe - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Resize
Policy ContainerResize Policy - Resources resize policy for the container.
- Resources
Resource
Requirements - Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- Restart
Policy string - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- Security
Context SecurityContext - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- Startup
Probe Probe - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices VolumeDevice - volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts VolumeMount - Pod volumes to mount into the container's filesystem. Cannot be updated.
- Working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args List<String>
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
List<Env
Var> - List of environment variables to set in the container. Cannot be updated.
- env
From List<EnvFrom Source> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull StringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
- Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe Probe - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
List<Container
Port> - List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe Probe - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy List<ContainerResize Policy> - Resources resize policy for the container.
- resources
Resource
Requirements - Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy String - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context SecurityContext - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe Probe - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin Boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message StringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<VolumeDevice> - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<VolumeMount> - Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir String - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name string
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args string[]
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command string[]
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
core.v1.
Env Var[] - List of environment variables to set in the container. Cannot be updated.
- env
From core.v1.Env From Source[] - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle
core.v1.
Lifecycle - Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe core.v1.Probe - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
core.v1.
Container Port[] - List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe core.v1.Probe - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy core.v1.Container Resize Policy[] - Resources resize policy for the container.
- resources
core.v1.
Resource Requirements - Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy string - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context core.v1.Security Context - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe core.v1.Probe - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices core.v1.Volume Device[] - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts core.v1.Volume Mount[] - Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name str
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args Sequence[str]
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command Sequence[str]
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Sequence[core.v1.
Env Var] - List of environment variables to set in the container. Cannot be updated.
- env_
from Sequence[core.v1.Env From Source] - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image str
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image_
pull_ strpolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle
core.v1.
Lifecycle - Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness_
probe core.v1.Probe - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
Sequence[core.v1.
Container Port] - List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness_
probe core.v1.Probe - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize_
policy Sequence[core.v1.Container Resize Policy] - Resources resize policy for the container.
- resources
core.v1.
Resource Requirements - Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart_
policy str - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security_
context core.v1.Security Context - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup_
probe core.v1.Probe - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin_
once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination_
message_ strpath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination_
message_ strpolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume_
devices Sequence[core.v1.Volume Device] - volumeDevices is the list of block devices to be used by the container.
- volume_
mounts Sequence[core.v1.Volume Mount] - Pod volumes to mount into the container's filesystem. Cannot be updated.
- working_
dir str - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
- Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args List<String>
- Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
- Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env List<Property Map>
- List of environment variables to set in the container. Cannot be updated.
- env
From List<Property Map> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull StringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Property Map
- Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe Property Map - Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports List<Property Map>
- List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe Property Map - Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy List<Property Map> - Resources resize policy for the container.
- resources Property Map
- Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy String - RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context Property Map - SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe Property Map - StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin Boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message StringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<Property Map> - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<Property Map> - Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir String - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
ContainerPort, ContainerPortArgs
- Container
Port intValue - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- Host
IP string - What host IP to bind the external port to.
- Host
Port int - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- Name string
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- Protocol string
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- Container
Port int - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- Host
IP string - What host IP to bind the external port to.
- Host
Port int - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- Name string
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- Protocol string
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port Integer - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP String - What host IP to bind the external port to.
- host
Port Integer - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name String
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol String
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port number - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP string - What host IP to bind the external port to.
- host
Port number - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name string
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol string
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container_
port int - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host_
ip str - What host IP to bind the external port to.
- host_
port int - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name str
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol str
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port Number - Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP String - What host IP to bind the external port to.
- host
Port Number - Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name String
- If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol String
- Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
ContainerResizePolicy, ContainerResizePolicyArgs
- Resource
Name string - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- Restart
Policy string - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- Resource
Name string - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- Restart
Policy string - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name String - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy String - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name string - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy string - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource_
name str - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart_
policy str - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name String - Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy String - Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
DaemonSetCondition, DaemonSetConditionArgs
- Status string
- Status of the condition, one of True, False, Unknown.
- Type string
- Type of DaemonSet condition.
- Last
Transition stringTime - Last time the condition transitioned from one status to another.
- Message string
- A human readable message indicating details about the transition.
- Reason string
- The reason for the condition's last transition.
- Status string
- Status of the condition, one of True, False, Unknown.
- Type string
- Type of DaemonSet condition.
- Last
Transition stringTime - Last time the condition transitioned from one status to another.
- Message string
- A human readable message indicating details about the transition.
- Reason string
- The reason for the condition's last transition.
- status String
- Status of the condition, one of True, False, Unknown.
- type String
- Type of DaemonSet condition.
- last
Transition StringTime - Last time the condition transitioned from one status to another.
- message String
- A human readable message indicating details about the transition.
- reason String
- The reason for the condition's last transition.
- status string
- Status of the condition, one of True, False, Unknown.
- type string
- Type of DaemonSet condition.
- last
Transition stringTime - Last time the condition transitioned from one status to another.
- message string
- A human readable message indicating details about the transition.
- reason string
- The reason for the condition's last transition.
- status str
- Status of the condition, one of True, False, Unknown.
- type str
- Type of DaemonSet condition.
- last_
transition_ strtime - Last time the condition transitioned from one status to another.
- message str
- A human readable message indicating details about the transition.
- reason str
- The reason for the condition's last transition.
- status String
- Status of the condition, one of True, False, Unknown.
- type String
- Type of DaemonSet condition.
- last
Transition StringTime - Last time the condition transitioned from one status to another.
- message String
- A human readable message indicating details about the transition.
- reason String
- The reason for the condition's last transition.
DaemonSetSpec, DaemonSetSpecArgs
- Selector
Pulumi.
Kubernetes. Meta. V1. Inputs. Label Selector - A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- Template
Pulumi.
Kubernetes. Core. V1. Inputs. Pod Template Spec - An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- Min
Ready intSeconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- Revision
History intLimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- Update
Strategy DaemonSet Update Strategy - An update strategy to replace existing DaemonSet pods with new pods.
- Selector
Label
Selector - A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- Template
Pod
Template Spec - An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- Min
Ready intSeconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- Revision
History intLimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- Update
Strategy DaemonSet Update Strategy - An update strategy to replace existing DaemonSet pods with new pods.
- selector
Label
Selector - A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- template
Pod
Template Spec - An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- min
Ready IntegerSeconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- revision
History IntegerLimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- update
Strategy DaemonSet Update Strategy - An update strategy to replace existing DaemonSet pods with new pods.
- selector
meta.v1.
Label Selector - A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- template
core.v1.
Pod Template Spec - An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- min
Ready numberSeconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- revision
History numberLimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- update
Strategy DaemonSet Update Strategy - An update strategy to replace existing DaemonSet pods with new pods.
- selector
meta.v1.
Label Selector - A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- template
core.v1.
Pod Template Spec - An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- min_
ready_ intseconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- revision_
history_ intlimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- update_
strategy DaemonSet Update Strategy - An update strategy to replace existing DaemonSet pods with new pods.
- selector Property Map
- A label query over pods that are managed by the daemon set. Must match in order to be controlled. It must match the pod template's labels. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
- template Property Map
- An object that describes the pod that will be created. The DaemonSet will create exactly one copy of this pod on every node that matches the template's node selector (or on every node if no node selector is specified). More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller#pod-template
- min
Ready NumberSeconds - The minimum number of seconds for which a newly created DaemonSet pod should be ready without any of its container crashing, for it to be considered available. Defaults to 0 (pod will be considered available as soon as it is ready).
- revision
History NumberLimit - The number of old history to retain to allow rollback. This is a pointer to distinguish between explicit zero and not specified. Defaults to 10.
- update
Strategy Property Map - An update strategy to replace existing DaemonSet pods with new pods.
DaemonSetStatus, DaemonSetStatusArgs
- Current
Number intScheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Desired
Number intScheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Number
Misscheduled int - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Number
Ready int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- Collision
Count int - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- Conditions
List<Daemon
Set Condition> - Represents the latest available observations of a DaemonSet's current state.
- Number
Available int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- int
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- Observed
Generation int - The most recent generation observed by the daemon set controller.
- Updated
Number intScheduled - The total number of nodes that are running updated daemon pod
- Current
Number intScheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Desired
Number intScheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Number
Misscheduled int - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- Number
Ready int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- Collision
Count int - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- Conditions
[]Daemon
Set Condition - Represents the latest available observations of a DaemonSet's current state.
- Number
Available int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- int
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- Observed
Generation int - The most recent generation observed by the daemon set controller.
- Updated
Number intScheduled - The total number of nodes that are running updated daemon pod
- current
Number IntegerScheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- desired
Number IntegerScheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Misscheduled Integer - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Ready Integer - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- collision
Count Integer - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- conditions
List<Daemon
Set Condition> - Represents the latest available observations of a DaemonSet's current state.
- number
Available Integer - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- Integer
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- observed
Generation Integer - The most recent generation observed by the daemon set controller.
- updated
Number IntegerScheduled - The total number of nodes that are running updated daemon pod
- current
Number numberScheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- desired
Number numberScheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Misscheduled number - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Ready number - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- collision
Count number - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- conditions
Daemon
Set Condition[] - Represents the latest available observations of a DaemonSet's current state.
- number
Available number - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- number
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- observed
Generation number - The most recent generation observed by the daemon set controller.
- updated
Number numberScheduled - The total number of nodes that are running updated daemon pod
- current_
number_ intscheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- desired_
number_ intscheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number_
misscheduled int - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number_
ready int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- collision_
count int - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- conditions
Sequence[Daemon
Set Condition] - Represents the latest available observations of a DaemonSet's current state.
- number_
available int - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- int
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- observed_
generation int - The most recent generation observed by the daemon set controller.
- updated_
number_ intscheduled - The total number of nodes that are running updated daemon pod
- current
Number NumberScheduled - The number of nodes that are running at least 1 daemon pod and are supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- desired
Number NumberScheduled - The total number of nodes that should be running the daemon pod (including nodes correctly running the daemon pod). More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Misscheduled Number - The number of nodes that are running the daemon pod, but are not supposed to run the daemon pod. More info: https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
- number
Ready Number - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and ready.
- collision
Count Number - Count of hash collisions for the DaemonSet. The DaemonSet controller uses this field as a collision avoidance mechanism when it needs to create the name for the newest ControllerRevision.
- conditions List<Property Map>
- Represents the latest available observations of a DaemonSet's current state.
- number
Available Number - The number of nodes that should be running the daemon pod and have one or more of the daemon pod running and available (ready for at least spec.minReadySeconds)
- Number
- The number of nodes that should be running the daemon pod and have none of the daemon pod running and available (ready for at least spec.minReadySeconds)
- observed
Generation Number - The most recent generation observed by the daemon set controller.
- updated
Number NumberScheduled - The total number of nodes that are running updated daemon pod
DaemonSetUpdateStrategy, DaemonSetUpdateStrategyArgs
- Rolling
Update RollingUpdate Daemon Set - Rolling update config params. Present only if type = "RollingUpdate".
- Type string
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
- Rolling
Update RollingUpdate Daemon Set - Rolling update config params. Present only if type = "RollingUpdate".
- Type string
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
- rolling
Update RollingUpdate Daemon Set - Rolling update config params. Present only if type = "RollingUpdate".
- type String
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
- rolling
Update RollingUpdate Daemon Set - Rolling update config params. Present only if type = "RollingUpdate".
- type string
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
- rolling_
update RollingUpdate Daemon Set - Rolling update config params. Present only if type = "RollingUpdate".
- type str
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
- rolling
Update Property Map - Rolling update config params. Present only if type = "RollingUpdate".
- type String
- Type of daemon set update. Can be "RollingUpdate" or "OnDelete". Default is RollingUpdate.
DownwardAPIProjection, DownwardAPIProjectionArgs
- Items
List<Pulumi.
Kubernetes. Core. V1. Inputs. Downward APIVolume File> - Items is a list of DownwardAPIVolume file
- Items
Downward
APIVolume File - Items is a list of DownwardAPIVolume file
- items
List<Downward
APIVolume File> - Items is a list of DownwardAPIVolume file
- items
core.v1.
Downward APIVolume File[] - Items is a list of DownwardAPIVolume file
- items
Sequence[core.v1.
Downward APIVolume File] - Items is a list of DownwardAPIVolume file
- items List<Property Map>
- Items is a list of DownwardAPIVolume file
DownwardAPIVolumeFile, DownwardAPIVolumeFileArgs
- Path string
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- Field
Ref Pulumi.Kubernetes. Core. V1. Inputs. Object Field Selector - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- Mode int
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Resource
Field Pulumi.Ref Kubernetes. Core. V1. Inputs. Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- Path string
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- Field
Ref ObjectField Selector - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- Mode int
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Resource
Field ResourceRef Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path String
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref ObjectField Selector - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- mode Integer
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field ResourceRef Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path string
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref core.v1.Object Field Selector - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- mode number
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field core.v1.Ref Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path str
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field_
ref core.v1.Object Field Selector - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- mode int
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource_
field_ core.v1.ref Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path String
- Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref Property Map - Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
- mode Number
- Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field Property MapRef - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
DownwardAPIVolumeSource, DownwardAPIVolumeSourceArgs
- Default
Mode int - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
List<Pulumi.
Kubernetes. Core. V1. Inputs. Downward APIVolume File> - Items is a list of downward API volume file
- Default
Mode int - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
Downward
APIVolume File - Items is a list of downward API volume file
- default
Mode Integer - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
List<Downward
APIVolume File> - Items is a list of downward API volume file
- default
Mode number - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
core.v1.
Downward APIVolume File[] - Items is a list of downward API volume file
- default_
mode int - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Sequence[core.v1.
Downward APIVolume File] - Items is a list of downward API volume file
- default
Mode Number - Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items List<Property Map>
- Items is a list of downward API volume file
EmptyDirVolumeSource, EmptyDirVolumeSourceArgs
- Medium string
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Size
Limit string - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Medium string
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Size
Limit string - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium String
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit String - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium string
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit string - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium str
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size_
limit str - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium String
- medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit String - sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
EnvFromSource, EnvFromSourceArgs
- Config
Map Pulumi.Ref Kubernetes. Core. V1. Inputs. Config Map Env Source - The ConfigMap to select from
- Prefix string
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- Secret
Ref Pulumi.Kubernetes. Core. V1. Inputs. Secret Env Source - The Secret to select from
- Config
Map ConfigRef Map Env Source - The ConfigMap to select from
- Prefix string
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- Secret
Ref SecretEnv Source - The Secret to select from
- config
Map ConfigRef Map Env Source - The ConfigMap to select from
- prefix String
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref SecretEnv Source - The Secret to select from
- config
Map core.v1.Ref Config Map Env Source - The ConfigMap to select from
- prefix string
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref core.v1.Secret Env Source - The Secret to select from
- config_
map_ core.v1.ref Config Map Env Source - The ConfigMap to select from
- prefix str
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret_
ref core.v1.Secret Env Source - The Secret to select from
- config
Map Property MapRef - The ConfigMap to select from
- prefix String
- An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref Property Map - The Secret to select from
EnvVar, EnvVarArgs
- Name string
- Name of the environment variable. Must be a C_IDENTIFIER.
- Value string
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- Value
From Pulumi.Kubernetes. Core. V1. Inputs. Env Var Source - Source for the environment variable's value. Cannot be used if value is not empty.
- Name string
- Name of the environment variable. Must be a C_IDENTIFIER.
- Value string
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- Value
From EnvVar Source - Source for the environment variable's value. Cannot be used if value is not empty.
- name String
- Name of the environment variable. Must be a C_IDENTIFIER.
- value String
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From EnvVar Source - Source for the environment variable's value. Cannot be used if value is not empty.
- name string
- Name of the environment variable. Must be a C_IDENTIFIER.
- value string
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From core.v1.Env Var Source - Source for the environment variable's value. Cannot be used if value is not empty.
- name str
- Name of the environment variable. Must be a C_IDENTIFIER.
- value str
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value_
from core.v1.Env Var Source - Source for the environment variable's value. Cannot be used if value is not empty.
- name String
- Name of the environment variable. Must be a C_IDENTIFIER.
- value String
- Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From Property Map - Source for the environment variable's value. Cannot be used if value is not empty.
EnvVarSource, EnvVarSourceArgs
- Config
Map Pulumi.Key Ref Kubernetes. Core. V1. Inputs. Config Map Key Selector - Selects a key of a ConfigMap.
- Field
Ref Pulumi.Kubernetes. Core. V1. Inputs. Object Field Selector - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - Resource
Field Pulumi.Ref Kubernetes. Core. V1. Inputs. Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- Secret
Key Pulumi.Ref Kubernetes. Core. V1. Inputs. Secret Key Selector - Selects a key of a secret in the pod's namespace
- Config
Map ConfigKey Ref Map Key Selector - Selects a key of a ConfigMap.
- Field
Ref ObjectField Selector - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - Resource
Field ResourceRef Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- Secret
Key SecretRef Key Selector - Selects a key of a secret in the pod's namespace
- config
Map ConfigKey Ref Map Key Selector - Selects a key of a ConfigMap.
- field
Ref ObjectField Selector - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - resource
Field ResourceRef Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key SecretRef Key Selector - Selects a key of a secret in the pod's namespace
- config
Map core.v1.Key Ref Config Map Key Selector - Selects a key of a ConfigMap.
- field
Ref core.v1.Object Field Selector - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - resource
Field core.v1.Ref Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key core.v1.Ref Secret Key Selector - Selects a key of a secret in the pod's namespace
- config_
map_ core.v1.key_ ref Config Map Key Selector - Selects a key of a ConfigMap.
- field_
ref core.v1.Object Field Selector - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - resource_
field_ core.v1.ref Resource Field Selector - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret_
key_ core.v1.ref Secret Key Selector - Selects a key of a secret in the pod's namespace
- config
Map Property MapKey Ref - Selects a key of a ConfigMap.
- field
Ref Property Map - Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs. - resource
Field Property MapRef - Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key Property MapRef - Selects a key of a secret in the pod's namespace
EphemeralContainer, EphemeralContainerArgs
- Name string
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- Args List<string>
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command List<string>
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
List<Pulumi.
Kubernetes. Core. V1. Inputs. Env Var> - List of environment variables to set in the container. Cannot be updated.
- Env
From List<Pulumi.Kubernetes. Core. V1. Inputs. Env From Source> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- Image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle
Pulumi.
Kubernetes. Core. V1. Inputs. Lifecycle - Lifecycle is not allowed for ephemeral containers.
- Liveness
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - Probes are not allowed for ephemeral containers.
- Ports
List<Pulumi.
Kubernetes. Core. V1. Inputs. Container Port> - Ports are not allowed for ephemeral containers.
- Readiness
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - Probes are not allowed for ephemeral containers.
- Resize
Policy List<Pulumi.Kubernetes. Core. V1. Inputs. Container Resize Policy> - Resources resize policy for the container.
- Resources
Pulumi.
Kubernetes. Core. V1. Inputs. Resource Requirements - Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- Restart
Policy string - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- Security
Context Pulumi.Kubernetes. Core. V1. Inputs. Security Context - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- Startup
Probe Pulumi.Kubernetes. Core. V1. Inputs. Probe - Probes are not allowed for ephemeral containers.
- Stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- Termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices List<Pulumi.Kubernetes. Core. V1. Inputs. Volume Device> - volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts List<Pulumi.Kubernetes. Core. V1. Inputs. Volume Mount> - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- Working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- Name string
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- Args []string
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command []string
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
Env
Var - List of environment variables to set in the container. Cannot be updated.
- Env
From EnvFrom Source - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- Image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
- Lifecycle is not allowed for ephemeral containers.
- Liveness
Probe Probe - Probes are not allowed for ephemeral containers.
- Ports
Container
Port - Ports are not allowed for ephemeral containers.
- Readiness
Probe Probe - Probes are not allowed for ephemeral containers.
- Resize
Policy ContainerResize Policy - Resources resize policy for the container.
- Resources
Resource
Requirements - Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- Restart
Policy string - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- Security
Context SecurityContext - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- Startup
Probe Probe - Probes are not allowed for ephemeral containers.
- Stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- Termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices VolumeDevice - volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts VolumeMount - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- Working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args List<String>
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
List<Env
Var> - List of environment variables to set in the container. Cannot be updated.
- env
From List<EnvFrom Source> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull StringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
- Lifecycle is not allowed for ephemeral containers.
- liveness
Probe Probe - Probes are not allowed for ephemeral containers.
- ports
List<Container
Port> - Ports are not allowed for ephemeral containers.
- readiness
Probe Probe - Probes are not allowed for ephemeral containers.
- resize
Policy List<ContainerResize Policy> - Resources resize policy for the container.
- resources
Resource
Requirements - Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy String - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context SecurityContext - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe Probe - Probes are not allowed for ephemeral containers.
- stdin Boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container StringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message StringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<VolumeDevice> - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<VolumeMount> - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir String - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name string
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args string[]
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command string[]
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
core.v1.
Env Var[] - List of environment variables to set in the container. Cannot be updated.
- env
From core.v1.Env From Source[] - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image string
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull stringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle
core.v1.
Lifecycle - Lifecycle is not allowed for ephemeral containers.
- liveness
Probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- ports
core.v1.
Container Port[] - Ports are not allowed for ephemeral containers.
- readiness
Probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- resize
Policy core.v1.Container Resize Policy[] - Resources resize policy for the container.
- resources
core.v1.
Resource Requirements - Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy string - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context core.v1.Security Context - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- stdin boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message stringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message stringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices core.v1.Volume Device[] - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts core.v1.Volume Mount[] - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir string - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name str
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args Sequence[str]
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command Sequence[str]
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Sequence[core.v1.
Env Var] - List of environment variables to set in the container. Cannot be updated.
- env_
from Sequence[core.v1.Env From Source] - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image str
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image_
pull_ strpolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle
core.v1.
Lifecycle - Lifecycle is not allowed for ephemeral containers.
- liveness_
probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- ports
Sequence[core.v1.
Container Port] - Ports are not allowed for ephemeral containers.
- readiness_
probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- resize_
policy Sequence[core.v1.Container Resize Policy] - Resources resize policy for the container.
- resources
core.v1.
Resource Requirements - Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart_
policy str - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security_
context core.v1.Security Context - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup_
probe core.v1.Probe - Probes are not allowed for ephemeral containers.
- stdin bool
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin_
once bool - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target_
container_ strname If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination_
message_ strpath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination_
message_ strpolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty bool
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume_
devices Sequence[core.v1.Volume Device] - volumeDevices is the list of block devices to be used by the container.
- volume_
mounts Sequence[core.v1.Volume Mount] - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working_
dir str - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
- Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args List<String>
- Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
- Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env List<Property Map>
- List of environment variables to set in the container. Cannot be updated.
- env
From List<Property Map> - List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
- Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull StringPolicy - Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Property Map
- Lifecycle is not allowed for ephemeral containers.
- liveness
Probe Property Map - Probes are not allowed for ephemeral containers.
- ports List<Property Map>
- Ports are not allowed for ephemeral containers.
- readiness
Probe Property Map - Probes are not allowed for ephemeral containers.
- resize
Policy List<Property Map> - Resources resize policy for the container.
- resources Property Map
- Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy String - Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context Property Map - Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe Property Map - Probes are not allowed for ephemeral containers.
- stdin Boolean
- Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean - Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container StringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message StringPath - Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy - Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
- Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<Property Map> - volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<Property Map> - Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir String - Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
EphemeralVolumeSource, EphemeralVolumeSourceArgs
- Read
Only bool - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Claim Pulumi.Template Kubernetes. Core. V1. Inputs. Persistent Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- Read
Only bool - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only Boolean - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only boolean - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim core.v1.Template Persistent Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read_
only bool - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume_
claim_ core.v1.template Persistent Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only Boolean - Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim Property MapTemplate Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
ExecAction, ExecActionArgs
- Command List<string>
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- Command []string
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command List<String>
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command string[]
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command Sequence[str]
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command List<String>
- Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
FCVolumeSource, FCVolumeSourceArgs
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Lun int
- lun is Optional: FC target lun number
- Read
Only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Target
WWNs List<string> - targetWWNs is Optional: FC target worldwide names (WWNs)
- Wwids List<string>
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Lun int
- lun is Optional: FC target lun number
- Read
Only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Target
WWNs []string - targetWWNs is Optional: FC target worldwide names (WWNs)
- Wwids []string
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun Integer
- lun is Optional: FC target lun number
- read
Only Boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs List<String> - targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids List<String>
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun number
- lun is Optional: FC target lun number
- read
Only boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs string[] - targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids string[]
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs_
type str - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun int
- lun is Optional: FC target lun number
- read_
only bool - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target_
wwns Sequence[str] - targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids Sequence[str]
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun Number
- lun is Optional: FC target lun number
- read
Only Boolean - readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs List<String> - targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids List<String>
- wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
FlexVolumeSource, FlexVolumeSourceArgs
- Driver string
- driver is the name of the driver to use for this volume.
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- Options Dictionary<string, string>
- options is Optional: this field holds extra command options if any.
- Read
Only bool - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Ref Pulumi.Kubernetes. Core. V1. Inputs. Local Object Reference - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- Driver string
- driver is the name of the driver to use for this volume.
- Fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- Options map[string]string
- options is Optional: this field holds extra command options if any.
- Read
Only bool - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Ref LocalObject Reference - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver String
- driver is the name of the driver to use for this volume.
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Map<String,String>
- options is Optional: this field holds extra command options if any.
- read
Only Boolean - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref LocalObject Reference - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver string
- driver is the name of the driver to use for this volume.
- fs
Type string - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options {[key: string]: string}
- options is Optional: this field holds extra command options if any.
- read
Only boolean - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref core.v1.Local Object Reference - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver str
- driver is the name of the driver to use for this volume.
- fs_
type str - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Mapping[str, str]
- options is Optional: this field holds extra command options if any.
- read_
only bool - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret_
ref core.v1.Local Object Reference - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver String
- driver is the name of the driver to use for this volume.
- fs
Type String - fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Map<String>
- options is Optional: this field holds extra command options if any.
- read
Only Boolean - readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref Property Map - secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
FlockerVolumeSource, FlockerVolumeSourceArgs
- Dataset
Name string - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- Dataset
UUID string - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- Dataset
Name string - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- Dataset
UUID string - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name String - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID String - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name string - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID string - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset_
name str - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset_
uuid str - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name String - datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID String - datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
GCEPersistentDiskVolumeSource, GCEPersistentDiskVolumeSourceArgs
- Pd
Name string - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Fs
Type string - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Read
Only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Pd
Name string - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Fs
Type string - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Read
Only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name String - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type String - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition Integer
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only Boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name string - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type string - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition number
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd_
name str - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs_
type str - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition int
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read_
only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name String - pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type String - fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition Number
- partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only Boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
GRPCAction, GRPCActionArgs
- Port int
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- Service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- Port int
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- Service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port Integer
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- service String
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port number
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port int
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- service str
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port Number
- Port number of the gRPC service. Number must be in the range 1 to 65535.
- service String
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
GitRepoVolumeSource, GitRepoVolumeSourceArgs
- Repository string
- repository is the URL
- Directory string
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- Revision string
- revision is the commit hash for the specified revision.
- Repository string
- repository is the URL
- Directory string
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- Revision string
- revision is the commit hash for the specified revision.
- repository String
- repository is the URL
- directory String
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision String
- revision is the commit hash for the specified revision.
- repository string
- repository is the URL
- directory string
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision string
- revision is the commit hash for the specified revision.
- repository str
- repository is the URL
- directory str
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision str
- revision is the commit hash for the specified revision.
- repository String
- repository is the URL
- directory String
- directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision String
- revision is the commit hash for the specified revision.
GlusterfsVolumeSource, GlusterfsVolumeSourceArgs
- Endpoints string
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Path string
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Read
Only bool - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Endpoints string
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Path string
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Read
Only bool - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints String
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path String
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only Boolean - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints string
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path string
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only boolean - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints str
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path str
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read_
only bool - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints String
- endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path String
- path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only Boolean - readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
HTTPGetAction, HTTPGetActionArgs
- Port int | string
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- Host string
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- Http
Headers List<Pulumi.Kubernetes. Core. V1. Inputs. HTTPHeader> - Custom headers to set in the request. HTTP allows repeated headers.
- Path string
- Path to access on the HTTP server.
- Scheme string
- Scheme to use for connecting to the host. Defaults to HTTP.
- Port int | string
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- Host string
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- Http
Headers HTTPHeader - Custom headers to set in the request. HTTP allows repeated headers.
- Path string
- Path to access on the HTTP server.
- Scheme string
- Scheme to use for connecting to the host. Defaults to HTTP.
- port Integer | String
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host String
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers List<HTTPHeader> - Custom headers to set in the request. HTTP allows repeated headers.
- path String
- Path to access on the HTTP server.
- scheme String
- Scheme to use for connecting to the host. Defaults to HTTP.
- port number | string
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host string
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers core.v1.HTTPHeader[] - Custom headers to set in the request. HTTP allows repeated headers.
- path string
- Path to access on the HTTP server.
- scheme string
- Scheme to use for connecting to the host. Defaults to HTTP.
- port int | str
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host str
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http_
headers Sequence[core.v1.HTTPHeader] - Custom headers to set in the request. HTTP allows repeated headers.
- path str
- Path to access on the HTTP server.
- scheme str
- Scheme to use for connecting to the host. Defaults to HTTP.
- port Number | String
- Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host String
- Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers List<Property Map> - Custom headers to set in the request. HTTP allows repeated headers.
- path String
- Path to access on the HTTP server.
- scheme String
- Scheme to use for connecting to the host. Defaults to HTTP.
HTTPHeader, HTTPHeaderArgs
HostAlias, HostAliasArgs
HostPathVolumeSource, HostPathVolumeSourceArgs
- Path string
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Type string
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Path string
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Type string
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path String
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type String
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path string
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type string
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path str
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type str
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path String
- path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type String
- type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
ISCSIVolumeSource, ISCSIVolumeSourceArgs
- Iqn string
- iqn is the target iSCSI Qualified Name.
- Lun int
- lun represents iSCSI Target Lun number.
- Target
Portal string - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Chap
Auth boolDiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- Chap
Auth boolSession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- Fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- Initiator
Name string - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- Iscsi
Interface string - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- Portals List<string>
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Read
Only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- Secret
Ref Pulumi.Kubernetes. Core. V1. Inputs. Local Object Reference - secretRef is the CHAP Secret for iSCSI target and initiator authentication
- Iqn string
- iqn is the target iSCSI Qualified Name.
- Lun int
- lun represents iSCSI Target Lun number.
- Target
Portal string - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Chap
Auth boolDiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- Chap
Auth boolSession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- Fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- Initiator
Name string - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- Iscsi
Interface string - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- Portals []string
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Read
Only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- Secret
Ref LocalObject Reference - secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn String
- iqn is the target iSCSI Qualified Name.
- lun Integer
- lun represents iSCSI Target Lun number.
- target
Portal String - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth BooleanDiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth BooleanSession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type String - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name String - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface String - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals List<String>
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only Boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref LocalObject Reference - secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn string
- iqn is the target iSCSI Qualified Name.
- lun number
- lun represents iSCSI Target Lun number.
- target
Portal string - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth booleanDiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth booleanSession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type string - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name string - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface string - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals string[]
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref core.v1.Local Object Reference - secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn str
- iqn is the target iSCSI Qualified Name.
- lun int
- lun represents iSCSI Target Lun number.
- target_
portal str - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap_
auth_ booldiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap_
auth_ boolsession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs_
type str - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator_
name str - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi_
interface str - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals Sequence[str]
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read_
only bool - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret_
ref core.v1.Local Object Reference - secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn String
- iqn is the target iSCSI Qualified Name.
- lun Number
- lun represents iSCSI Target Lun number.
- target
Portal String - targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth BooleanDiscovery - chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth BooleanSession - chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type String - fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name String - initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface String - iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals List<String>
- portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only Boolean - readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref Property Map - secretRef is the CHAP Secret for iSCSI target and initiator authentication
ImageVolumeSource, ImageVolumeSourceArgs
- Pull
Policy string - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- Reference string
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- Pull
Policy string - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- Reference string
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- pull
Policy String - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- reference String
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- pull
Policy string - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- reference string
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- pull_
policy str - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- reference str
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- pull
Policy String - Policy for pulling OCI objects. Possible values are: Always: the kubelet always attempts to pull the reference. Container creation will fail If the pull fails. Never: the kubelet never pulls the reference and only uses a local image or artifact. Container creation will fail if the reference isn't present. IfNotPresent: the kubelet pulls if the reference isn't already present on disk. Container creation will fail if the reference isn't present and the pull fails. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise.
- reference String
- Required: Image or artifact reference to be used. Behaves in the same way as pod.spec.containers[*].image. Pull secrets will be assembled in the same way as for the container image by looking up node credentials, SA image pull secrets, and pod spec image pull secrets. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
KeyToPath, KeyToPathArgs
- Key string
- key is the key to project.
- Path string
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- Mode int
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Key string
- key is the key to project.
- Path string
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- Mode int
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key String
- key is the key to project.
- path String
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode Integer
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key string
- key is the key to project.
- path string
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode number
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key str
- key is the key to project.
- path str
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode int
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key String
- key is the key to project.
- path String
- path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode Number
- mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
LabelSelector, LabelSelectorArgs
- Match
Expressions List<Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector Requirement> - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- Match
Labels Dictionary<string, string> - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- Match
Expressions LabelSelector Requirement - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- Match
Labels map[string]string - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions List<LabelSelector Requirement> - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels Map<String,String> - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions meta.v1.Label Selector Requirement[] - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels {[key: string]: string} - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match_
expressions Sequence[meta.v1.Label Selector Requirement] - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match_
labels Mapping[str, str] - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions List<Property Map> - matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels Map<String> - matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
LabelSelectorRequirement, LabelSelectorRequirementArgs
- Key string
- key is the label key that the selector applies to.
- Operator string
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- Values List<string>
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- Key string
- key is the label key that the selector applies to.
- Operator string
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- Values []string
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key String
- key is the label key that the selector applies to.
- operator String
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values List<String>
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key string
- key is the label key that the selector applies to.
- operator string
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values string[]
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key str
- key is the label key that the selector applies to.
- operator str
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values Sequence[str]
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key String
- key is the label key that the selector applies to.
- operator String
- operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values List<String>
- values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
Lifecycle, LifecycleArgs
- Post
Start Pulumi.Kubernetes. Core. V1. Inputs. Lifecycle Handler - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Pre
Stop Pulumi.Kubernetes. Core. V1. Inputs. Lifecycle Handler - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Post
Start LifecycleHandler - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Pre
Stop LifecycleHandler - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start LifecycleHandler - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop LifecycleHandler - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start core.v1.Lifecycle Handler - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop core.v1.Lifecycle Handler - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post_
start core.v1.Lifecycle Handler - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre_
stop core.v1.Lifecycle Handler - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start Property Map - PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop Property Map - PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
LifecycleHandler, LifecycleHandlerArgs
- Exec
Pulumi.
Kubernetes. Core. V1. Inputs. Exec Action - Exec specifies the action to take.
- Http
Get Pulumi.Kubernetes. Core. V1. Inputs. HTTPGet Action - HTTPGet specifies the http request to perform.
- Sleep
Pulumi.
Kubernetes. Core. V1. Inputs. Sleep Action - Sleep represents the duration that the container should sleep before being terminated.
- Tcp
Socket Pulumi.Kubernetes. Core. V1. Inputs. TCPSocket Action - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- Exec
Exec
Action - Exec specifies the action to take.
- Http
Get HTTPGetAction - HTTPGet specifies the http request to perform.
- Sleep
Sleep
Action - Sleep represents the duration that the container should sleep before being terminated.
- Tcp
Socket TCPSocketAction - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec
Exec
Action - Exec specifies the action to take.
- http
Get HTTPGetAction - HTTPGet specifies the http request to perform.
- sleep
Sleep
Action - Sleep represents the duration that the container should sleep before being terminated.
- tcp
Socket TCPSocketAction - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec
core.v1.
Exec Action - Exec specifies the action to take.
- http
Get core.v1.HTTPGet Action - HTTPGet specifies the http request to perform.
- sleep
core.v1.
Sleep Action - Sleep represents the duration that the container should sleep before being terminated.
- tcp
Socket core.v1.TCPSocket Action - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec_
core.v1.
Exec Action - Exec specifies the action to take.
- http_
get core.v1.HTTPGet Action - HTTPGet specifies the http request to perform.
- sleep
core.v1.
Sleep Action - Sleep represents the duration that the container should sleep before being terminated.
- tcp_
socket core.v1.TCPSocket Action - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec Property Map
- Exec specifies the action to take.
- http
Get Property Map - HTTPGet specifies the http request to perform.
- sleep Property Map
- Sleep represents the duration that the container should sleep before being terminated.
- tcp
Socket Property Map - Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
LocalObjectReference, LocalObjectReferenceArgs
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name string
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name str
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name String
- Name of the referent. This field is effectively required, but due to backwards compatibility is allowed to be empty. Instances of this type with an empty value here are almost certainly wrong. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
ManagedFieldsEntry, ManagedFieldsEntryArgs
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 System.Text. Json. Json Element - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 interface{} - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JsonElement - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager string
- Manager is an identifier of the workflow managing these fields.
- operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api_
version str - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields_
type str - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields_
v1 Any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager str
- Manager is an identifier of the workflow managing these fields.
- operation str
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource str
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time str
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JSON - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
NFSVolumeSource, NFSVolumeSourceArgs
- Path string
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Server string
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Read
Only bool - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Path string
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Server string
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Read
Only bool - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path String
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server String
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only Boolean - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path string
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server string
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only boolean - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path str
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server str
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read_
only bool - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path String
- path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server String
- server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only Boolean - readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
NodeAffinity, NodeAffinityArgs
- Preferred
During List<Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Preferred Scheduling Term> - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- Required
During Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Node Selector - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- Preferred
During PreferredScheduling Ignored During Execution Scheduling Term - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- Required
During NodeScheduling Ignored During Execution Selector - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During List<PreferredScheduling Ignored During Execution Scheduling Term> - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During NodeScheduling Ignored During Execution Selector - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During core.v1.Scheduling Ignored During Execution Preferred Scheduling Term[] - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During core.v1.Scheduling Ignored During Execution Node Selector - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred_
during_ Sequence[core.v1.scheduling_ ignored_ during_ execution Preferred Scheduling Term] - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required_
during_ core.v1.scheduling_ ignored_ during_ execution Node Selector - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During List<Property Map>Scheduling Ignored During Execution - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During Property MapScheduling Ignored During Execution - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
NodeSelector, NodeSelectorArgs
- Node
Selector List<Pulumi.Terms Kubernetes. Core. V1. Inputs. Node Selector Term> - Required. A list of node selector terms. The terms are ORed.
- Node
Selector NodeTerms Selector Term - Required. A list of node selector terms. The terms are ORed.
- node
Selector List<NodeTerms Selector Term> - Required. A list of node selector terms. The terms are ORed.
- node
Selector core.v1.Terms Node Selector Term[] - Required. A list of node selector terms. The terms are ORed.
- node_
selector_ Sequence[core.v1.terms Node Selector Term] - Required. A list of node selector terms. The terms are ORed.
- node
Selector List<Property Map>Terms - Required. A list of node selector terms. The terms are ORed.
NodeSelectorRequirement, NodeSelectorRequirementArgs
- Key string
- The label key that the selector applies to.
- Operator string
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- Values List<string>
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- Key string
- The label key that the selector applies to.
- Operator string
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- Values []string
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key String
- The label key that the selector applies to.
- operator String
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values List<String>
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key string
- The label key that the selector applies to.
- operator string
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values string[]
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key str
- The label key that the selector applies to.
- operator str
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values Sequence[str]
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key String
- The label key that the selector applies to.
- operator String
- Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values List<String>
- An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
NodeSelectorTerm, NodeSelectorTermArgs
- Match
Expressions List<Pulumi.Kubernetes. Core. V1. Inputs. Node Selector Requirement> - A list of node selector requirements by node's labels.
- Match
Fields List<Pulumi.Kubernetes. Core. V1. Inputs. Node Selector Requirement> - A list of node selector requirements by node's fields.
- Match
Expressions NodeSelector Requirement - A list of node selector requirements by node's labels.
- Match
Fields NodeSelector Requirement - A list of node selector requirements by node's fields.
- match
Expressions List<NodeSelector Requirement> - A list of node selector requirements by node's labels.
- match
Fields List<NodeSelector Requirement> - A list of node selector requirements by node's fields.
- match
Expressions core.v1.Node Selector Requirement[] - A list of node selector requirements by node's labels.
- match
Fields core.v1.Node Selector Requirement[] - A list of node selector requirements by node's fields.
- match_
expressions Sequence[core.v1.Node Selector Requirement] - A list of node selector requirements by node's labels.
- match_
fields Sequence[core.v1.Node Selector Requirement] - A list of node selector requirements by node's fields.
- match
Expressions List<Property Map> - A list of node selector requirements by node's labels.
- match
Fields List<Property Map> - A list of node selector requirements by node's fields.
ObjectFieldSelector, ObjectFieldSelectorArgs
- Field
Path string - Path of the field to select in the specified API version.
- Api
Version string - Version of the schema the FieldPath is written in terms of, defaults to "v1".
- Field
Path string - Path of the field to select in the specified API version.
- Api
Version string - Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path String - Path of the field to select in the specified API version.
- api
Version String - Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path string - Path of the field to select in the specified API version.
- api
Version string - Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field_
path str - Path of the field to select in the specified API version.
- api_
version str - Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path String - Path of the field to select in the specified API version.
- api
Version String - Version of the schema the FieldPath is written in terms of, defaults to "v1".
ObjectMeta, ObjectMetaArgs
- Annotations Dictionary<string, string>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers List<string>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels Dictionary<string, string>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields List<Pulumi.Kubernetes. Meta. V1. Inputs. Managed Fields Entry> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References List<Pulumi.Kubernetes. Meta. V1. Inputs. Owner Reference> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Annotations map[string]string
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers []string
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels map[string]string
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields ManagedFields Entry - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References OwnerReference - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String,String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace IntegerPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Integer
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String,String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<ManagedFields Entry> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<OwnerReference> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations {[key: string]: string}
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace numberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers string[]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels {[key: string]: string}
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields meta.v1.Managed Fields Entry[] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References meta.v1.Owner Reference[] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Mapping[str, str]
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster_
name str - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation_
timestamp str CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion_
grace_ intperiod_ seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion_
timestamp str DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers Sequence[str]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate_
name str GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Mapping[str, str]
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed_
fields Sequence[meta.v1.Managed Fields Entry] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name str
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace str
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner_
references Sequence[meta.v1.Owner Reference] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource_
version str An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self_
link str - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid str
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace NumberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<Property Map> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<Property Map> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
OwnerReference, OwnerReferenceArgs
- Api
Version string - API version of the referent.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- Api
Version string - API version of the referent.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- api
Version String - API version of the referent.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
- api
Version string - API version of the referent.
- kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner booleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller boolean
- If true, this reference points to the managing controller.
- api_
version str - API version of the referent.
- kind str
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name str
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid str
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block_
owner_ booldeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller bool
- If true, this reference points to the managing controller.
- api
Version String - API version of the referent.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
PersistentVolumeClaimSpec, PersistentVolumeClaimSpecArgs
- Access
Modes List<string> - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- Data
Source Pulumi.Kubernetes. Core. V1. Inputs. Typed Local Object Reference - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- Data
Source Pulumi.Ref Kubernetes. Core. V1. Inputs. Typed Object Reference - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- Resources
Pulumi.
Kubernetes. Core. V1. Inputs. Volume Resource Requirements - resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- Selector
Pulumi.
Kubernetes. Meta. V1. Inputs. Label Selector - selector is a label query over volumes to consider for binding.
- Storage
Class stringName - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- Volume
Attributes stringClass Name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- Volume
Mode string - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- Volume
Name string - volumeName is the binding reference to the PersistentVolume backing this claim.
- Access
Modes []string - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- Data
Source TypedLocal Object Reference - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- Data
Source TypedRef Object Reference - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- Resources
Volume
Resource Requirements - resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- Selector
Label
Selector - selector is a label query over volumes to consider for binding.
- Storage
Class stringName - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- Volume
Attributes stringClass Name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- Volume
Mode string - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- Volume
Name string - volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes List<String> - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source TypedLocal Object Reference - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source TypedRef Object Reference - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
Volume
Resource Requirements - resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
Label
Selector - selector is a label query over volumes to consider for binding.
- storage
Class StringName - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Attributes StringClass Name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- volume
Mode String - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name String - volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes string[] - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source core.v1.Typed Local Object Reference - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source core.v1.Ref Typed Object Reference - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
core.v1.
Volume Resource Requirements - resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
meta.v1.
Label Selector - selector is a label query over volumes to consider for binding.
- storage
Class stringName - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Attributes stringClass Name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- volume
Mode string - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name string - volumeName is the binding reference to the PersistentVolume backing this claim.
- access_
modes Sequence[str] - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data_
source core.v1.Typed Local Object Reference - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data_
source_ core.v1.ref Typed Object Reference - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
core.v1.
Volume Resource Requirements - resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
meta.v1.
Label Selector - selector is a label query over volumes to consider for binding.
- storage_
class_ strname - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume_
attributes_ strclass_ name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- volume_
mode str - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume_
name str - volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes List<String> - accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source Property Map - dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source Property MapRef - dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef
allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources Property Map
- resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector Property Map
- selector is a label query over volumes to consider for binding.
- storage
Class StringName - storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Attributes StringClass Name - volumeAttributesClassName may be used to set the VolumeAttributesClass used by this claim. If specified, the CSI driver will create or update the volume with the attributes defined in the corresponding VolumeAttributesClass. This has a different purpose than storageClassName, it can be changed after the claim is created. An empty string value means that no VolumeAttributesClass will be applied to the claim but it's not allowed to reset this field to empty string once it is set. If unspecified and the PersistentVolumeClaim is unbound, the default VolumeAttributesClass will be set by the persistentvolume controller if it exists. If the resource referred to by volumeAttributesClass does not exist, this PersistentVolumeClaim will be set to a Pending state, as reflected by the modifyVolumeStatus field, until such as a resource exists. More info: https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/ (Beta) Using this field requires the VolumeAttributesClass feature gate to be enabled (off by default).
- volume
Mode String - volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name String - volumeName is the binding reference to the PersistentVolume backing this claim.
PersistentVolumeClaimTemplate, PersistentVolumeClaimTemplateArgs
- Spec
Pulumi.
Kubernetes. Core. V1. Inputs. Persistent Volume Claim Spec - The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta - May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- Spec
Persistent
Volume Claim Spec - The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- Metadata
Object
Meta - May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Persistent
Volume Claim Spec - The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
Object
Meta - May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
core.v1.
Persistent Volume Claim Spec - The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
meta.v1.
Object Meta - May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
core.v1.
Persistent Volume Claim Spec - The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
meta.v1.
Object Meta - May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec Property Map
- The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata Property Map
- May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
PersistentVolumeClaimVolumeSource, PersistentVolumeClaimVolumeSourceArgs
- claim
Name String - claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only Boolean - readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim
Name string - claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only boolean - readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim_
name str - claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read_
only bool - readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim
Name String - claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only Boolean - readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
PhotonPersistentDiskVolumeSource, PhotonPersistentDiskVolumeSourceArgs
PodAffinity, PodAffinityArgs
- Preferred
During List<Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Weighted Pod Affinity Term> - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During List<Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Pod Affinity Term> - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- Preferred
During WeightedScheduling Ignored During Execution Pod Affinity Term - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During PodScheduling Ignored During Execution Affinity Term - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<PodScheduling Ignored During Execution Affinity Term> - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During core.v1.Scheduling Ignored During Execution Weighted Pod Affinity Term[] - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During core.v1.Scheduling Ignored During Execution Pod Affinity Term[] - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred_
during_ Sequence[core.v1.scheduling_ ignored_ during_ execution Weighted Pod Affinity Term] - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required_
during_ Sequence[core.v1.scheduling_ ignored_ during_ execution Pod Affinity Term] - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<Property Map>Scheduling Ignored During Execution - The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<Property Map>Scheduling Ignored During Execution - If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
PodAffinityTerm, PodAffinityTermArgs
- Topology
Key string - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- Label
Selector Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- Match
Label List<string>Keys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - Mismatch
Label List<string>Keys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - Namespace
Selector Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- Namespaces List<string>
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- Topology
Key string - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- Label
Selector LabelSelector - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- Match
Label []stringKeys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - Mismatch
Label []stringKeys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - Namespace
Selector LabelSelector - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- Namespaces []string
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key String - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector LabelSelector - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- match
Label List<String>Keys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - mismatch
Label List<String>Keys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - namespace
Selector LabelSelector - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces List<String>
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key string - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector meta.v1.Label Selector - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- match
Label string[]Keys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - mismatch
Label string[]Keys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - namespace
Selector meta.v1.Label Selector - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces string[]
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology_
key str - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label_
selector meta.v1.Label Selector - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- match_
label_ Sequence[str]keys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - mismatch_
label_ Sequence[str]keys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - namespace_
selector meta.v1.Label Selector - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces Sequence[str]
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key String - This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector Property Map - A label query over a set of resources, in this case pods. If it's null, this PodAffinityTerm matches with no Pods.
- match
Label List<String>Keys - MatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey in (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both matchLabelKeys and labelSelector. Also, matchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - mismatch
Label List<String>Keys - MismatchLabelKeys is a set of pod label keys to select which pods will be taken into consideration. The keys are used to lookup values from the incoming pod labels, those key-value labels are merged with
labelSelector
askey notin (value)
to select the group of existing pods which pods will be taken into consideration for the incoming pod's pod (anti) affinity. Keys that don't exist in the incoming pod labels will be ignored. The default value is empty. The same key is forbidden to exist in both mismatchLabelKeys and labelSelector. Also, mismatchLabelKeys cannot be set when labelSelector isn't set. This is a beta field and requires enabling MatchLabelKeysInPodAffinity feature gate (enabled by default). - namespace
Selector Property Map - A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces List<String>
- namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
PodAntiAffinity, PodAntiAffinityArgs
- Preferred
During List<Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Weighted Pod Affinity Term> - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During List<Pulumi.Scheduling Ignored During Execution Kubernetes. Core. V1. Inputs. Pod Affinity Term> - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- Preferred
During WeightedScheduling Ignored During Execution Pod Affinity Term - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During PodScheduling Ignored During Execution Affinity Term - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<PodScheduling Ignored During Execution Affinity Term> - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During core.v1.Scheduling Ignored During Execution Weighted Pod Affinity Term[] - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During core.v1.Scheduling Ignored During Execution Pod Affinity Term[] - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred_
during_ Sequence[core.v1.scheduling_ ignored_ during_ execution Weighted Pod Affinity Term] - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required_
during_ Sequence[core.v1.scheduling_ ignored_ during_ execution Pod Affinity Term] - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<Property Map>Scheduling Ignored During Execution - The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<Property Map>Scheduling Ignored During Execution - If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
PodDNSConfig, PodDNSConfigArgs
- Nameservers List<string>
- A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- Options
List<Pulumi.
Kubernetes. Core. V1. Inputs. Pod DNSConfig Option> - A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- Searches List<string>
- A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- Nameservers []string
- A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- Options
Pod
DNSConfig Option - A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- Searches []string
- A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- nameservers List<String>
- A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- options
List<Pod
DNSConfig Option> - A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- searches List<String>
- A list of DNS search domains for host-name lookup. This will be appended to the bas