kubernetes.core/v1.PodTemplate
Explore with Pulumi AI
PodTemplate describes a template for creating copies of a predefined pod.
Create PodTemplate Resource
new PodTemplate(name: string, args?: PodTemplate, opts?: CustomResourceOptions);
@overload
def PodTemplate(resource_name: str,
opts: Optional[ResourceOptions] = None,
metadata: Optional[_meta.v1.ObjectMetaArgs] = None,
template: Optional[PodTemplateSpecArgs] = None)
@overload
def PodTemplate(resource_name: str,
args: Optional[PodTemplateInitArgs] = None,
opts: Optional[ResourceOptions] = None)
func NewPodTemplate(ctx *Context, name string, args *PodTemplateArgs, opts ...ResourceOption) (*PodTemplate, error)
public PodTemplate(string name, PodTemplateArgs? args = null, CustomResourceOptions? opts = null)
public PodTemplate(String name, PodTemplateArgs args)
public PodTemplate(String name, PodTemplateArgs args, CustomResourceOptions options)
type: kubernetes:core/v1:PodTemplate
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args PodTemplate
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args PodTemplateInitArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args PodTemplateArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args PodTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args PodTemplateArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
PodTemplate Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The PodTemplate resource accepts the following input properties:
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Template
Pod
Template Spec Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- Metadata
Object
Meta Args Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Template
Pod
Template Spec Args Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
Object
Meta Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- template
Pod
Template Spec Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
meta.v1.
Object Meta Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- template
Pod
Template Spec Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata
Object
Meta Args Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- template
Pod
Template Spec Args Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
- metadata Property Map
Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- template Property Map
Template defines the pods that will be created from this pod template. https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
Outputs
All input properties are implicitly available as output properties. Additionally, the PodTemplate resource produces the following output properties:
- Id string
The provider-assigned unique ID for this managed resource.
- Id string
The provider-assigned unique ID for this managed resource.
- id String
The provider-assigned unique ID for this managed resource.
- id string
The provider-assigned unique ID for this managed resource.
- id str
The provider-assigned unique ID for this managed resource.
- id String
The provider-assigned unique ID for this managed resource.
Supporting Types
AWSElasticBlockStoreVolumeSource, AWSElasticBlockStoreVolumeSourceArgs
- Volume
ID string volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- Read
Only bool readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Volume
ID string volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- Partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- Read
Only bool readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID String volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type String fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition Integer
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only Boolean readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID string volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition number
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only boolean readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume_
id str volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs_
type str fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read_
only bool readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- volume
ID String volumeID is unique ID of the persistent disk resource in AWS (Amazon EBS volume). More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- fs
Type String fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
- partition Number
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty).
- read
Only Boolean readOnly value true will force the readOnly setting in VolumeMounts. More info: https://kubernetes.io/docs/concepts/storage/volumes#awselasticblockstore
Affinity, AffinityArgs
- Node
Affinity NodeAffinity Describes node affinity scheduling rules for the pod.
- Pod
Affinity PodAffinity Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- Pod
Anti PodAffinity Anti Affinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- Node
Affinity NodeAffinity Describes node affinity scheduling rules for the pod.
- Pod
Affinity PodAffinity Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- Pod
Anti PodAffinity Anti Affinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity NodeAffinity Describes node affinity scheduling rules for the pod.
- pod
Affinity PodAffinity Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti PodAffinity Anti Affinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity NodeAffinity Describes node affinity scheduling rules for the pod.
- pod
Affinity PodAffinity Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti PodAffinity Anti Affinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node_
affinity NodeAffinity Describes node affinity scheduling rules for the pod.
- pod_
affinity PodAffinity Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod_
anti_ Podaffinity Anti Affinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
- node
Affinity Property Map Describes node affinity scheduling rules for the pod.
- pod
Affinity Property Map Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
- pod
Anti Property MapAffinity Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
AzureDiskVolumeSource, AzureDiskVolumeSourceArgs
- Disk
Name string diskName is the Name of the data disk in the blob storage
- Disk
URI string diskURI is the URI of data disk in the blob storage
- Caching
Mode string cachingMode is the Host Caching mode: None, Read Only, Read Write.
- Fs
Type string fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Kind string
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- Read
Only bool readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Disk
Name string diskName is the Name of the data disk in the blob storage
- Disk
URI string diskURI is the URI of data disk in the blob storage
- Caching
Mode string cachingMode is the Host Caching mode: None, Read Only, Read Write.
- Fs
Type string fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Kind string
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- Read
Only bool readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name String diskName is the Name of the data disk in the blob storage
- disk
URI String diskURI is the URI of data disk in the blob storage
- caching
Mode String cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type String fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind String
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only Boolean readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name string diskName is the Name of the data disk in the blob storage
- disk
URI string diskURI is the URI of data disk in the blob storage
- caching
Mode string cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type string fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind string
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only boolean readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk_
name str diskName is the Name of the data disk in the blob storage
- disk_
uri str diskURI is the URI of data disk in the blob storage
- caching_
mode str cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs_
type str fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind str
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read_
only bool readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- disk
Name String diskName is the Name of the data disk in the blob storage
- disk
URI String diskURI is the URI of data disk in the blob storage
- caching
Mode String cachingMode is the Host Caching mode: None, Read Only, Read Write.
- fs
Type String fsType is Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- kind String
kind expected values are Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
- read
Only Boolean readOnly Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
AzureFileVolumeSource, AzureFileVolumeSourceArgs
- Secret
Name string secretName is the name of secret that contains Azure Storage Account Name and Key
- string
shareName is the azure share Name
- Read
Only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Name string secretName is the name of secret that contains Azure Storage Account Name and Key
- string
shareName is the azure share Name
- Read
Only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name String secretName is the name of secret that contains Azure Storage Account Name and Key
- String
shareName is the azure share Name
- read
Only Boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name string secretName is the name of secret that contains Azure Storage Account Name and Key
- string
shareName is the azure share Name
- read
Only boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret_
name str secretName is the name of secret that contains Azure Storage Account Name and Key
- str
shareName is the azure share Name
- read_
only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Name String secretName is the name of secret that contains Azure Storage Account Name and Key
- String
shareName is the azure share Name
- read
Only Boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
CSIVolumeSource, CSIVolumeSourceArgs
- Driver string
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- Fs
Type string fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- Node
Publish LocalSecret Ref Object Reference nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- Read
Only bool readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Attributes Dictionary<string, string> volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- Driver string
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- Fs
Type string fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- Node
Publish LocalSecret Ref Object Reference nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- Read
Only bool readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Attributes map[string]string volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver String
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type String fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish LocalSecret Ref Object Reference nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only Boolean readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes Map<String,String> volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver string
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type string fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish LocalSecret Ref Object Reference nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only boolean readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes {[key: string]: string} volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver str
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs_
type str fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node_
publish_ Localsecret_ ref Object Reference nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read_
only bool readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume_
attributes Mapping[str, str] volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
- driver String
driver is the name of the CSI driver that handles this volume. Consult with your admin for the correct name as registered in the cluster.
- fs
Type String fsType to mount. Ex. "ext4", "xfs", "ntfs". If not provided, the empty value is passed to the associated CSI driver which will determine the default filesystem to apply.
- node
Publish Property MapSecret Ref nodePublishSecretRef is a reference to the secret object containing sensitive information to pass to the CSI driver to complete the CSI NodePublishVolume and NodeUnpublishVolume calls. This field is optional, and may be empty if no secret is required. If the secret object contains more than one secret, all secret references are passed.
- read
Only Boolean readOnly specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Attributes Map<String> volumeAttributes stores driver-specific properties that are passed to the CSI driver. Consult your driver's documentation for supported values.
Capabilities, CapabilitiesArgs
CephFSVolumeSource, CephFSVolumeSourceArgs
- Monitors List<string>
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Path string
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- Read
Only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
File string secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
Ref LocalObject Reference secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- User string
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Monitors []string
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Path string
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- Read
Only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
File string secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- Secret
Ref LocalObject Reference secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- User string
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors List<String>
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path String
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only Boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File String secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref LocalObject Reference secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user String
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors string[]
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path string
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File string secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref LocalObject Reference secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user string
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors Sequence[str]
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path str
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read_
only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret_
file str secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret_
ref LocalObject Reference secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user str
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- monitors List<String>
monitors is Required: Monitors is a collection of Ceph monitors More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- path String
path is Optional: Used as the mounted root, rather than the full Ceph tree, default is /
- read
Only Boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
File String secretFile is Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- secret
Ref Property Map secretRef is Optional: SecretRef is reference to the authentication secret for User, default is empty. More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
- user String
user is optional: User is the rados user name, default is admin More info: https://examples.k8s.io/volumes/cephfs/README.md#how-to-use-it
CinderVolumeSource, CinderVolumeSourceArgs
- Volume
ID string volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Read
Only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Secret
Ref LocalObject Reference secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- Volume
ID string volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Read
Only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- Secret
Ref LocalObject Reference secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID String volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only Boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref LocalObject Reference secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID string volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref LocalObject Reference secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume_
id str volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs_
type str fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read_
only bool readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret_
ref LocalObject Reference secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
- volume
ID String volumeID used to identify the volume in cinder. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- read
Only Boolean readOnly defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts. More info: https://examples.k8s.io/mysql-cinder-pd/README.md
- secret
Ref Property Map secretRef is optional: points to a secret object containing parameters used to connect to OpenStack.
ClaimSource, ClaimSourceArgs
- Resource
Claim stringName ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- Resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- Resource
Claim stringName ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- Resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim StringName ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim StringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim stringName ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim stringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource_
claim_ strname ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource_
claim_ strtemplate_ name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
- resource
Claim StringName ResourceClaimName is the name of a ResourceClaim object in the same namespace as this pod.
- resource
Claim StringTemplate Name ResourceClaimTemplateName is the name of a ResourceClaimTemplate object in the same namespace as this pod.
The template will be used to create a new ResourceClaim, which will be bound to this pod. When this pod is deleted, the ResourceClaim will also be deleted. The pod name and resource name, along with a generated component, will be used to form a unique name for the ResourceClaim, which will be recorded in pod.status.resourceClaimStatuses.
This field is immutable and no changes will be made to the corresponding ResourceClaim by the control plane after creating the ResourceClaim.
ConfigMapEnvSource, ConfigMapEnvSourceArgs
ConfigMapKeySelector, ConfigMapKeySelectorArgs
ConfigMapProjection, ConfigMapProjectionArgs
- Items
List<Key
To Path> items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
optional specify whether the ConfigMap or its keys must be defined
- Items
[]Key
To Path items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
optional specify whether the ConfigMap or its keys must be defined
- items
List<Key
To Path> items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
optional specify whether the ConfigMap or its keys must be defined
- items
Key
To Path[] items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
optional specify whether the ConfigMap or its keys must be defined
- items
Sequence[Key
To Path] items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name str
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
optional specify whether the ConfigMap or its keys must be defined
- items List<Property Map>
items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
optional specify whether the ConfigMap or its keys must be defined
ConfigMapVolumeSource, ConfigMapVolumeSourceArgs
- Default
Mode int defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
List<Key
To Path> items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
optional specify whether the ConfigMap or its keys must be defined
- Default
Mode int defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
[]Key
To Path items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Optional bool
optional specify whether the ConfigMap or its keys must be defined
- default
Mode Integer defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
List<Key
To Path> items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
optional specify whether the ConfigMap or its keys must be defined
- default
Mode number defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Key
To Path[] items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional boolean
optional specify whether the ConfigMap or its keys must be defined
- default_
mode int defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Sequence[Key
To Path] items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name str
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional bool
optional specify whether the ConfigMap or its keys must be defined
- default
Mode Number defaultMode is optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items List<Property Map>
items if unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- optional Boolean
optional specify whether the ConfigMap or its keys must be defined
Container, ContainerArgs
- Name string
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- Args List<string>
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command List<string>
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
List<Env
Var> List of environment variables to set in the container. Cannot be updated.
- Env
From List<EnvFrom Source> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- Image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- Liveness
Probe Probe Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Ports
List<Container
Port> List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- Readiness
Probe Probe Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Resize
Policy List<ContainerResize Policy> Resources resize policy for the container.
- Resources
Resource
Requirements Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- Restart
Policy string RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- Security
Context SecurityContext SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- Startup
Probe Probe StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices List<VolumeDevice> volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts List<VolumeMount> Pod volumes to mount into the container's filesystem. Cannot be updated.
- Working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- Name string
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- Args []string
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command []string
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
[]Env
Var List of environment variables to set in the container. Cannot be updated.
- Env
From []EnvFrom Source List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- Image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- Liveness
Probe Probe Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Ports
[]Container
Port List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- Readiness
Probe Probe Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Resize
Policy []ContainerResize Policy Resources resize policy for the container.
- Resources
Resource
Requirements Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- Restart
Policy string RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- Security
Context SecurityContext SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- Startup
Probe Probe StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- Stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices []VolumeDevice volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts []VolumeMount Pod volumes to mount into the container's filesystem. Cannot be updated.
- Working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args List<String>
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
List<Env
Var> List of environment variables to set in the container. Cannot be updated.
- env
From List<EnvFrom Source> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull StringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe Probe Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
List<Container
Port> List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe Probe Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy List<ContainerResize Policy> Resources resize policy for the container.
- resources
Resource
Requirements Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy String RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context SecurityContext SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe Probe StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin Boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message StringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<VolumeDevice> volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<VolumeMount> Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir String Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name string
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args string[]
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command string[]
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Env
Var[] List of environment variables to set in the container. Cannot be updated.
- env
From EnvFrom Source[] List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe Probe Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
Container
Port[] List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe Probe Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy ContainerResize Policy[] Resources resize policy for the container.
- resources
Resource
Requirements Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy string RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context SecurityContext SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe Probe StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices VolumeDevice[] volumeDevices is the list of block devices to be used by the container.
- volume
Mounts VolumeMount[] Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name str
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args Sequence[str]
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command Sequence[str]
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Sequence[Env
Var] List of environment variables to set in the container. Cannot be updated.
- env_
from Sequence[EnvFrom Source] List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image str
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image_
pull_ strpolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness_
probe Probe Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports
Sequence[Container
Port] List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness_
probe Probe Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize_
policy Sequence[ContainerResize Policy] Resources resize policy for the container.
- resources
Resource
Requirements Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart_
policy str RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security_
context SecurityContext SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup_
probe Probe StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin_
once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination_
message_ strpath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination_
message_ strpolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume_
devices Sequence[VolumeDevice] volumeDevices is the list of block devices to be used by the container.
- volume_
mounts Sequence[VolumeMount] Pod volumes to mount into the container's filesystem. Cannot be updated.
- working_
dir str Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated.
- args List<String>
Arguments to the entrypoint. The container image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
Entrypoint array. Not executed within a shell. The container image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env List<Property Map>
List of environment variables to set in the container. Cannot be updated.
- env
From List<Property Map> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets.
- image
Pull StringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Property Map
Actions that the management system should take in response to container lifecycle events. Cannot be updated.
- liveness
Probe Property Map Periodic probe of container liveness. Container will be restarted if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- ports List<Property Map>
List of ports to expose from the container. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default "0.0.0.0" address inside a container will be accessible from the network. Modifying this array with strategic merge patch may corrupt the data. For more information See https://github.com/kubernetes/kubernetes/issues/108255. Cannot be updated.
- readiness
Probe Property Map Periodic probe of container service readiness. Container will be removed from service endpoints if the probe fails. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- resize
Policy List<Property Map> Resources resize policy for the container.
- resources Property Map
Compute Resources required by this container. Cannot be updated. More info: https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
- restart
Policy String RestartPolicy defines the restart behavior of individual containers in a pod. This field may only be set for init containers, and the only allowed value is "Always". For non-init containers or when this field is not specified, the restart behavior is defined by the Pod's restart policy and the container type. Setting the RestartPolicy as "Always" for the init container will have the following effect: this init container will be continually restarted on exit until all regular containers have terminated. Once all regular containers have completed, all init containers with restartPolicy "Always" will be shut down. This lifecycle differs from normal init containers and is often referred to as a "sidecar" container. Although this init container still starts in the init container sequence, it does not wait for the container to complete before proceeding to the next init container. Instead, the next init container starts immediately after this init container is started, or after any startupProbe has successfully completed.
- security
Context Property Map SecurityContext defines the security options the container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext. More info: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
- startup
Probe Property Map StartupProbe indicates that the Pod has successfully initialized. If specified, no other probes are executed until this completes successfully. If this probe fails, the Pod will be restarted, just as if the livenessProbe failed. This can be used to provide different probe parameters at the beginning of a Pod's lifecycle, when it might take a long time to load data or warm a cache, than during steady-state operation. This cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
- stdin Boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- termination
Message StringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<Property Map> volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<Property Map> Pod volumes to mount into the container's filesystem. Cannot be updated.
- working
Dir String Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
ContainerPort, ContainerPortArgs
- Container
Port intValue Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- Host
IP string What host IP to bind the external port to.
- Host
Port int Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- Name string
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- Protocol string
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- Container
Port int Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- Host
IP string What host IP to bind the external port to.
- Host
Port int Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- Name string
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- Protocol string
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port Integer Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP String What host IP to bind the external port to.
- host
Port Integer Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name String
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol String
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port number Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP string What host IP to bind the external port to.
- host
Port number Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name string
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol string
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container_
port int Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host_
ip str What host IP to bind the external port to.
- host_
port int Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name str
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol str
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
- container
Port Number Number of port to expose on the pod's IP address. This must be a valid port number, 0 < x < 65536.
- host
IP String What host IP to bind the external port to.
- host
Port Number Number of port to expose on the host. If specified, this must be a valid port number, 0 < x < 65536. If HostNetwork is specified, this must match ContainerPort. Most containers do not need this.
- name String
If specified, this must be an IANA_SVC_NAME and unique within the pod. Each named port in a pod must have a unique name. Name for the port that can be referred to by services.
- protocol String
Protocol for port. Must be UDP, TCP, or SCTP. Defaults to "TCP".
ContainerResizePolicy, ContainerResizePolicyArgs
- Resource
Name string Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- Restart
Policy string Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- Resource
Name string Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- Restart
Policy string Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name String Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy String Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name string Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy string Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource_
name str Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart_
policy str Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
- resource
Name String Name of the resource to which this resource resize policy applies. Supported values: cpu, memory.
- restart
Policy String Restart policy to apply when specified resource is resized. If not specified, it defaults to NotRequired.
DownwardAPIProjection, DownwardAPIProjectionArgs
- Items
List<Downward
APIVolume File> Items is a list of DownwardAPIVolume file
- Items
[]Downward
APIVolume File Items is a list of DownwardAPIVolume file
- items
List<Downward
APIVolume File> Items is a list of DownwardAPIVolume file
- items
Downward
APIVolume File[] Items is a list of DownwardAPIVolume file
- items
Sequence[Downward
APIVolume File] Items is a list of DownwardAPIVolume file
- items List<Property Map>
Items is a list of DownwardAPIVolume file
DownwardAPIVolumeFile, DownwardAPIVolumeFileArgs
- Path string
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- Field
Ref ObjectField Selector Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- Mode int
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- Path string
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- Field
Ref ObjectField Selector Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- Mode int
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path String
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref ObjectField Selector Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- mode Integer
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path string
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref ObjectField Selector Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- mode number
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path str
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field_
ref ObjectField Selector Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- mode int
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource_
field_ Resourceref Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
- path String
Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
- field
Ref Property Map Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
- mode Number
Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- resource
Field Property MapRef Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
DownwardAPIVolumeSource, DownwardAPIVolumeSourceArgs
- Default
Mode int Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
List<Downward
APIVolume File> Items is a list of downward API volume file
- Default
Mode int Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Items
[]Downward
APIVolume File Items is a list of downward API volume file
- default
Mode Integer Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
List<Downward
APIVolume File> Items is a list of downward API volume file
- default
Mode number Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Downward
APIVolume File[] Items is a list of downward API volume file
- default_
mode int Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items
Sequence[Downward
APIVolume File] Items is a list of downward API volume file
- default
Mode Number Optional: mode bits to use on created files by default. Must be a Optional: mode bits used to set permissions on created files by default. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. Defaults to 0644. Directories within the path are not affected by this setting. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- items List<Property Map>
Items is a list of downward API volume file
EmptyDirVolumeSource, EmptyDirVolumeSourceArgs
- Medium string
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Size
Limit string sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Medium string
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- Size
Limit string sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium String
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit String sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium string
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit string sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium str
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size_
limit str sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- medium String
medium represents what type of storage medium should back this directory. The default is "" which means to use the node's default medium. Must be an empty string (default) or Memory. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
- size
Limit String sizeLimit is the total amount of local storage required for this EmptyDir volume. The size limit is also applicable for memory medium. The maximum usage on memory medium EmptyDir would be the minimum value between the SizeLimit specified here and the sum of memory limits of all containers in a pod. The default is nil which means that the limit is undefined. More info: https://kubernetes.io/docs/concepts/storage/volumes#emptydir
EnvFromSource, EnvFromSourceArgs
- Config
Map ConfigRef Map Env Source The ConfigMap to select from
- Prefix string
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- Secret
Ref SecretEnv Source The Secret to select from
- Config
Map ConfigRef Map Env Source The ConfigMap to select from
- Prefix string
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- Secret
Ref SecretEnv Source The Secret to select from
- config
Map ConfigRef Map Env Source The ConfigMap to select from
- prefix String
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref SecretEnv Source The Secret to select from
- config
Map ConfigRef Map Env Source The ConfigMap to select from
- prefix string
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref SecretEnv Source The Secret to select from
- config_
map_ Configref Map Env Source The ConfigMap to select from
- prefix str
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret_
ref SecretEnv Source The Secret to select from
- config
Map Property MapRef The ConfigMap to select from
- prefix String
An optional identifier to prepend to each key in the ConfigMap. Must be a C_IDENTIFIER.
- secret
Ref Property Map The Secret to select from
EnvVar, EnvVarArgs
- Name string
Name of the environment variable. Must be a C_IDENTIFIER.
- Value string
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- Value
From EnvVar Source Source for the environment variable's value. Cannot be used if value is not empty.
- Name string
Name of the environment variable. Must be a C_IDENTIFIER.
- Value string
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- Value
From EnvVar Source Source for the environment variable's value. Cannot be used if value is not empty.
- name String
Name of the environment variable. Must be a C_IDENTIFIER.
- value String
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From EnvVar Source Source for the environment variable's value. Cannot be used if value is not empty.
- name string
Name of the environment variable. Must be a C_IDENTIFIER.
- value string
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From EnvVar Source Source for the environment variable's value. Cannot be used if value is not empty.
- name str
Name of the environment variable. Must be a C_IDENTIFIER.
- value str
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value_
from EnvVar Source Source for the environment variable's value. Cannot be used if value is not empty.
- name String
Name of the environment variable. Must be a C_IDENTIFIER.
- value String
Variable references $(VAR_NAME) are expanded using the previously defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".
- value
From Property Map Source for the environment variable's value. Cannot be used if value is not empty.
EnvVarSource, EnvVarSourceArgs
- Config
Map ConfigKey Ref Map Key Selector Selects a key of a ConfigMap.
- Field
Ref ObjectField Selector Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- Resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- Secret
Key SecretRef Key Selector Selects a key of a secret in the pod's namespace
- Config
Map ConfigKey Ref Map Key Selector Selects a key of a ConfigMap.
- Field
Ref ObjectField Selector Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- Resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- Secret
Key SecretRef Key Selector Selects a key of a secret in the pod's namespace
- config
Map ConfigKey Ref Map Key Selector Selects a key of a ConfigMap.
- field
Ref ObjectField Selector Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key SecretRef Key Selector Selects a key of a secret in the pod's namespace
- config
Map ConfigKey Ref Map Key Selector Selects a key of a ConfigMap.
- field
Ref ObjectField Selector Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- resource
Field ResourceRef Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key SecretRef Key Selector Selects a key of a secret in the pod's namespace
- config_
map_ Configkey_ ref Map Key Selector Selects a key of a ConfigMap.
- field_
ref ObjectField Selector Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- resource_
field_ Resourceref Field Selector Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret_
key_ Secretref Key Selector Selects a key of a secret in the pod's namespace
- config
Map Property MapKey Ref Selects a key of a ConfigMap.
- field
Ref Property Map Selects a field of the pod: supports metadata.name, metadata.namespace,
metadata.labels['<KEY>']
,metadata.annotations['<KEY>']
, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.- resource
Field Property MapRef Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
- secret
Key Property MapRef Selects a key of a secret in the pod's namespace
EphemeralContainer, EphemeralContainerArgs
- Name string
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- Args List<string>
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command List<string>
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
List<Env
Var> List of environment variables to set in the container. Cannot be updated.
- Env
From List<EnvFrom Source> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- Image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
Lifecycle is not allowed for ephemeral containers.
- Liveness
Probe Probe Probes are not allowed for ephemeral containers.
- Ports
List<Container
Port> Ports are not allowed for ephemeral containers.
- Readiness
Probe Probe Probes are not allowed for ephemeral containers.
- Resize
Policy List<ContainerResize Policy> Resources resize policy for the container.
- Resources
Resource
Requirements Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- Restart
Policy string Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- Security
Context SecurityContext Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- Startup
Probe Probe Probes are not allowed for ephemeral containers.
- Stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- Termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices List<VolumeDevice> volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts List<VolumeMount> Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- Working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- Name string
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- Args []string
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Command []string
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- Env
[]Env
Var List of environment variables to set in the container. Cannot be updated.
- Env
From []EnvFrom Source List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- Image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- Image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- Lifecycle Lifecycle
Lifecycle is not allowed for ephemeral containers.
- Liveness
Probe Probe Probes are not allowed for ephemeral containers.
- Ports
[]Container
Port Ports are not allowed for ephemeral containers.
- Readiness
Probe Probe Probes are not allowed for ephemeral containers.
- Resize
Policy []ContainerResize Policy Resources resize policy for the container.
- Resources
Resource
Requirements Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- Restart
Policy string Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- Security
Context SecurityContext Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- Startup
Probe Probe Probes are not allowed for ephemeral containers.
- Stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- Stdin
Once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- Target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- Termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- Termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- Tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- Volume
Devices []VolumeDevice volumeDevices is the list of block devices to be used by the container.
- Volume
Mounts []VolumeMount Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- Working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args List<String>
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
List<Env
Var> List of environment variables to set in the container. Cannot be updated.
- env
From List<EnvFrom Source> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull StringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Lifecycle is not allowed for ephemeral containers.
- liveness
Probe Probe Probes are not allowed for ephemeral containers.
- ports
List<Container
Port> Ports are not allowed for ephemeral containers.
- readiness
Probe Probe Probes are not allowed for ephemeral containers.
- resize
Policy List<ContainerResize Policy> Resources resize policy for the container.
- resources
Resource
Requirements Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy String Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context SecurityContext Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe Probe Probes are not allowed for ephemeral containers.
- stdin Boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container StringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message StringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<VolumeDevice> volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<VolumeMount> Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir String Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name string
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args string[]
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command string[]
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Env
Var[] List of environment variables to set in the container. Cannot be updated.
- env
From EnvFrom Source[] List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image string
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull stringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Lifecycle is not allowed for ephemeral containers.
- liveness
Probe Probe Probes are not allowed for ephemeral containers.
- ports
Container
Port[] Ports are not allowed for ephemeral containers.
- readiness
Probe Probe Probes are not allowed for ephemeral containers.
- resize
Policy ContainerResize Policy[] Resources resize policy for the container.
- resources
Resource
Requirements Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy string Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context SecurityContext Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe Probe Probes are not allowed for ephemeral containers.
- stdin boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container stringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message stringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message stringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices VolumeDevice[] volumeDevices is the list of block devices to be used by the container.
- volume
Mounts VolumeMount[] Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir string Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name str
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args Sequence[str]
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command Sequence[str]
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env
Sequence[Env
Var] List of environment variables to set in the container. Cannot be updated.
- env_
from Sequence[EnvFrom Source] List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image str
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image_
pull_ strpolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Lifecycle
Lifecycle is not allowed for ephemeral containers.
- liveness_
probe Probe Probes are not allowed for ephemeral containers.
- ports
Sequence[Container
Port] Ports are not allowed for ephemeral containers.
- readiness_
probe Probe Probes are not allowed for ephemeral containers.
- resize_
policy Sequence[ContainerResize Policy] Resources resize policy for the container.
- resources
Resource
Requirements Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart_
policy str Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security_
context SecurityContext Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup_
probe Probe Probes are not allowed for ephemeral containers.
- stdin bool
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin_
once bool Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target_
container_ strname If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination_
message_ strpath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination_
message_ strpolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty bool
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume_
devices Sequence[VolumeDevice] volumeDevices is the list of block devices to be used by the container.
- volume_
mounts Sequence[VolumeMount] Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working_
dir str Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
- name String
Name of the ephemeral container specified as a DNS_LABEL. This name must be unique among all containers, init containers and ephemeral containers.
- args List<String>
Arguments to the entrypoint. The image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- command List<String>
Entrypoint array. Not executed within a shell. The image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. Double $$ are reduced to a single $, which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will produce the string literal "$(VAR_NAME)". Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell
- env List<Property Map>
List of environment variables to set in the container. Cannot be updated.
- env
From List<Property Map> List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated.
- image String
Container image name. More info: https://kubernetes.io/docs/concepts/containers/images
- image
Pull StringPolicy Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images
- lifecycle Property Map
Lifecycle is not allowed for ephemeral containers.
- liveness
Probe Property Map Probes are not allowed for ephemeral containers.
- ports List<Property Map>
Ports are not allowed for ephemeral containers.
- readiness
Probe Property Map Probes are not allowed for ephemeral containers.
- resize
Policy List<Property Map> Resources resize policy for the container.
- resources Property Map
Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources already allocated to the pod.
- restart
Policy String Restart policy for the container to manage the restart behavior of each container within a pod. This may only be set for init containers. You cannot set this field on ephemeral containers.
- security
Context Property Map Optional: SecurityContext defines the security options the ephemeral container should be run with. If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
- startup
Probe Property Map Probes are not allowed for ephemeral containers.
- stdin Boolean
Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false.
- stdin
Once Boolean Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false
- target
Container StringName If set, the name of the container from PodSpec that this ephemeral container targets. The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container. If not set then the ephemeral container uses the namespaces configured in the Pod spec.
The container runtime must implement support for this feature. If the runtime does not support namespace targeting then the result of setting this field is undefined.
- termination
Message StringPath Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated.
- termination
Message StringPolicy Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated.
- tty Boolean
Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false.
- volume
Devices List<Property Map> volumeDevices is the list of block devices to be used by the container.
- volume
Mounts List<Property Map> Pod volumes to mount into the container's filesystem. Subpath mounts are not allowed for ephemeral containers. Cannot be updated.
- working
Dir String Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated.
EphemeralVolumeSource, EphemeralVolumeSourceArgs
- Read
Only bool Specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- Read
Only bool Specifies a read-only configuration for the volume. Defaults to false (read/write).
- Volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only Boolean Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only boolean Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim PersistentTemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read_
only bool Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume_
claim_ Persistenttemplate Volume Claim Template Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
- read
Only Boolean Specifies a read-only configuration for the volume. Defaults to false (read/write).
- volume
Claim Property MapTemplate Will be used to create a stand-alone PVC to provision the volume. The pod in which this EphemeralVolumeSource is embedded will be the owner of the PVC, i.e. the PVC will be deleted together with the pod. The name of the PVC will be
<pod name>-<volume name>
where<volume name>
is the name from thePodSpec.Volumes
array entry. Pod validation will reject the pod if the concatenated name is not valid for a PVC (for example, too long).An existing PVC with that name that is not owned by the pod will not be used for the pod to avoid using an unrelated volume by mistake. Starting the pod is then blocked until the unrelated PVC is removed. If such a pre-created PVC is meant to be used by the pod, the PVC has to updated with an owner reference to the pod once the pod exists. Normally this should not be necessary, but it may be useful when manually reconstructing a broken cluster.
This field is read-only and no changes will be made by Kubernetes to the PVC after it has been created.
Required, must not be nil.
ExecAction, ExecActionArgs
- Command List<string>
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- Command []string
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command List<String>
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command string[]
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command Sequence[str]
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
- command List<String>
Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
FCVolumeSource, FCVolumeSourceArgs
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Lun int
lun is Optional: FC target lun number
- Read
Only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Target
WWNs List<string> targetWWNs is Optional: FC target worldwide names (WWNs)
- Wwids List<string>
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- Lun int
lun is Optional: FC target lun number
- Read
Only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Target
WWNs []string targetWWNs is Optional: FC target worldwide names (WWNs)
- Wwids []string
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun Integer
lun is Optional: FC target lun number
- read
Only Boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs List<String> targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids List<String>
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun number
lun is Optional: FC target lun number
- read
Only boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs string[] targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids string[]
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs_
type str fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun int
lun is Optional: FC target lun number
- read_
only bool readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target_
wwns Sequence[str] targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids Sequence[str]
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
- lun Number
lun is Optional: FC target lun number
- read
Only Boolean readOnly is Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- target
WWNs List<String> targetWWNs is Optional: FC target worldwide names (WWNs)
- wwids List<String>
wwids Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.
FlexVolumeSource, FlexVolumeSourceArgs
- Driver string
driver is the name of the driver to use for this volume.
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- Options Dictionary<string, string>
options is Optional: this field holds extra command options if any.
- Read
Only bool readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Ref LocalObject Reference secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- Driver string
driver is the name of the driver to use for this volume.
- Fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- Options map[string]string
options is Optional: this field holds extra command options if any.
- Read
Only bool readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- Secret
Ref LocalObject Reference secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver String
driver is the name of the driver to use for this volume.
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Map<String,String>
options is Optional: this field holds extra command options if any.
- read
Only Boolean readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref LocalObject Reference secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver string
driver is the name of the driver to use for this volume.
- fs
Type string fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options {[key: string]: string}
options is Optional: this field holds extra command options if any.
- read
Only boolean readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref LocalObject Reference secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver str
driver is the name of the driver to use for this volume.
- fs_
type str fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Mapping[str, str]
options is Optional: this field holds extra command options if any.
- read_
only bool readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret_
ref LocalObject Reference secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
- driver String
driver is the name of the driver to use for this volume.
- fs
Type String fsType is the filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
- options Map<String>
options is Optional: this field holds extra command options if any.
- read
Only Boolean readOnly is Optional: defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.
- secret
Ref Property Map secretRef is Optional: secretRef is reference to the secret object containing sensitive information to pass to the plugin scripts. This may be empty if no secret object is specified. If the secret object contains more than one secret, all secrets are passed to the plugin scripts.
FlockerVolumeSource, FlockerVolumeSourceArgs
- Dataset
Name string datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- Dataset
UUID string datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- Dataset
Name string datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- Dataset
UUID string datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name String datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID String datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name string datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID string datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset_
name str datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset_
uuid str datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
- dataset
Name String datasetName is Name of the dataset stored as metadata -> name on the dataset for Flocker should be considered as deprecated
- dataset
UUID String datasetUUID is the UUID of the dataset. This is unique identifier of a Flocker dataset
GCEPersistentDiskVolumeSource, GCEPersistentDiskVolumeSourceArgs
- Pd
Name string pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Fs
Type string fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Read
Only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Pd
Name string pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Fs
Type string fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- Read
Only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name String pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type String fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition Integer
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only Boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name string pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type string fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition number
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd_
name str pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs_
type str fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition int
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read_
only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- pd
Name String pdName is unique name of the PD resource in GCE. Used to identify the disk in GCE. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- fs
Type String fsType is filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- partition Number
partition is the partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as "1". Similarly, the volume partition for /dev/sda is "0" (or you can leave the property empty). More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
- read
Only Boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#gcepersistentdisk
GRPCAction, GRPCActionArgs
- Port int
Port number of the gRPC service. Number must be in the range 1 to 65535.
- Service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- Port int
Port number of the gRPC service. Number must be in the range 1 to 65535.
- Service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port Integer
Port number of the gRPC service. Number must be in the range 1 to 65535.
- service String
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port number
Port number of the gRPC service. Number must be in the range 1 to 65535.
- service string
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port int
Port number of the gRPC service. Number must be in the range 1 to 65535.
- service str
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
- port Number
Port number of the gRPC service. Number must be in the range 1 to 65535.
- service String
Service is the name of the service to place in the gRPC HealthCheckRequest (see https://github.com/grpc/grpc/blob/master/doc/health-checking.md).
If this is not specified, the default behavior is defined by gRPC.
GitRepoVolumeSource, GitRepoVolumeSourceArgs
- Repository string
repository is the URL
- Directory string
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- Revision string
revision is the commit hash for the specified revision.
- Repository string
repository is the URL
- Directory string
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- Revision string
revision is the commit hash for the specified revision.
- repository String
repository is the URL
- directory String
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision String
revision is the commit hash for the specified revision.
- repository string
repository is the URL
- directory string
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision string
revision is the commit hash for the specified revision.
- repository str
repository is the URL
- directory str
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision str
revision is the commit hash for the specified revision.
- repository String
repository is the URL
- directory String
directory is the target directory name. Must not contain or start with '..'. If '.' is supplied, the volume directory will be the git repository. Otherwise, if specified, the volume will contain the git repository in the subdirectory with the given name.
- revision String
revision is the commit hash for the specified revision.
GlusterfsVolumeSource, GlusterfsVolumeSourceArgs
- Endpoints string
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Path string
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Read
Only bool readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Endpoints string
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Path string
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- Read
Only bool readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints String
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path String
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only Boolean readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints string
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path string
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only boolean readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints str
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path str
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read_
only bool readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- endpoints String
endpoints is the endpoint name that details Glusterfs topology. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- path String
path is the Glusterfs volume path. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
- read
Only Boolean readOnly here will force the Glusterfs volume to be mounted with read-only permissions. Defaults to false. More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
HTTPGetAction, HTTPGetActionArgs
- Port int | string
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- Host string
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- Http
Headers List<HTTPHeader> Custom headers to set in the request. HTTP allows repeated headers.
- Path string
Path to access on the HTTP server.
- Scheme string
Scheme to use for connecting to the host. Defaults to HTTP.
- Port int | string
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- Host string
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- Http
Headers []HTTPHeader Custom headers to set in the request. HTTP allows repeated headers.
- Path string
Path to access on the HTTP server.
- Scheme string
Scheme to use for connecting to the host. Defaults to HTTP.
- port Integer | String
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host String
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers List<HTTPHeader> Custom headers to set in the request. HTTP allows repeated headers.
- path String
Path to access on the HTTP server.
- scheme String
Scheme to use for connecting to the host. Defaults to HTTP.
- port number | string
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host string
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers HTTPHeader[] Custom headers to set in the request. HTTP allows repeated headers.
- path string
Path to access on the HTTP server.
- scheme string
Scheme to use for connecting to the host. Defaults to HTTP.
- port int | str
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host str
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http_
headers Sequence[HTTPHeader] Custom headers to set in the request. HTTP allows repeated headers.
- path str
Path to access on the HTTP server.
- scheme str
Scheme to use for connecting to the host. Defaults to HTTP.
- port Number | String
Name or number of the port to access on the container. Number must be in the range 1 to 65535. Name must be an IANA_SVC_NAME.
- host String
Host name to connect to, defaults to the pod IP. You probably want to set "Host" in httpHeaders instead.
- http
Headers List<Property Map> Custom headers to set in the request. HTTP allows repeated headers.
- path String
Path to access on the HTTP server.
- scheme String
Scheme to use for connecting to the host. Defaults to HTTP.
HTTPHeader, HTTPHeaderArgs
HostAlias, HostAliasArgs
HostPathVolumeSource, HostPathVolumeSourceArgs
- Path string
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Type string
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Path string
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- Type string
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path String
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type String
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path string
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type string
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path str
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type str
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- path String
path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
- type String
type for HostPath Volume Defaults to "" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath
ISCSIVolumeSource, ISCSIVolumeSourceArgs
- Iqn string
iqn is the target iSCSI Qualified Name.
- Lun int
lun represents iSCSI Target Lun number.
- Target
Portal string targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Chap
Auth boolDiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- Chap
Auth boolSession chapAuthSession defines whether support iSCSI Session CHAP authentication
- Fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- Initiator
Name string initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- Iscsi
Interface string iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- Portals List<string>
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Read
Only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- Secret
Ref LocalObject Reference secretRef is the CHAP Secret for iSCSI target and initiator authentication
- Iqn string
iqn is the target iSCSI Qualified Name.
- Lun int
lun represents iSCSI Target Lun number.
- Target
Portal string targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Chap
Auth boolDiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- Chap
Auth boolSession chapAuthSession defines whether support iSCSI Session CHAP authentication
- Fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- Initiator
Name string initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- Iscsi
Interface string iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- Portals []string
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- Read
Only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- Secret
Ref LocalObject Reference secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn String
iqn is the target iSCSI Qualified Name.
- lun Integer
lun represents iSCSI Target Lun number.
- target
Portal String targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth BooleanDiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth BooleanSession chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type String fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name String initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface String iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals List<String>
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only Boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref LocalObject Reference secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn string
iqn is the target iSCSI Qualified Name.
- lun number
lun represents iSCSI Target Lun number.
- target
Portal string targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth booleanDiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth booleanSession chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type string fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name string initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface string iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals string[]
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref LocalObject Reference secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn str
iqn is the target iSCSI Qualified Name.
- lun int
lun represents iSCSI Target Lun number.
- target_
portal str targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap_
auth_ booldiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap_
auth_ boolsession chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs_
type str fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator_
name str initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi_
interface str iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals Sequence[str]
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read_
only bool readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret_
ref LocalObject Reference secretRef is the CHAP Secret for iSCSI target and initiator authentication
- iqn String
iqn is the target iSCSI Qualified Name.
- lun Number
lun represents iSCSI Target Lun number.
- target
Portal String targetPortal is iSCSI Target Portal. The Portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- chap
Auth BooleanDiscovery chapAuthDiscovery defines whether support iSCSI Discovery CHAP authentication
- chap
Auth BooleanSession chapAuthSession defines whether support iSCSI Session CHAP authentication
- fs
Type String fsType is the filesystem type of the volume that you want to mount. Tip: Ensure that the filesystem type is supported by the host operating system. Examples: "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified. More info: https://kubernetes.io/docs/concepts/storage/volumes#iscsi
- initiator
Name String initiatorName is the custom iSCSI Initiator Name. If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface : will be created for the connection.
- iscsi
Interface String iscsiInterface is the interface Name that uses an iSCSI transport. Defaults to 'default' (tcp).
- portals List<String>
portals is the iSCSI Target Portal List. The portal is either an IP or ip_addr:port if the port is other than default (typically TCP ports 860 and 3260).
- read
Only Boolean readOnly here will force the ReadOnly setting in VolumeMounts. Defaults to false.
- secret
Ref Property Map secretRef is the CHAP Secret for iSCSI target and initiator authentication
KeyToPath, KeyToPathArgs
- Key string
key is the key to project.
- Path string
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- Mode int
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- Key string
key is the key to project.
- Path string
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- Mode int
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key String
key is the key to project.
- path String
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode Integer
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key string
key is the key to project.
- path string
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode number
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key str
key is the key to project.
- path str
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode int
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
- key String
key is the key to project.
- path String
path is the relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
- mode Number
mode is Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
LabelSelector, LabelSelectorArgs
- Match
Expressions List<Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector Requirement> matchExpressions is a list of label selector requirements. The requirements are ANDed.
- Match
Labels Dictionary<string, string> matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- Match
Expressions LabelSelector Requirement matchExpressions is a list of label selector requirements. The requirements are ANDed.
- Match
Labels map[string]string matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions List<LabelSelector Requirement> matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels Map<String,String> matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions meta.v1.Label Selector Requirement[] matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels {[key: string]: string} matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match_
expressions LabelSelector Requirement] matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match_
labels Mapping[str, str] matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
- match
Expressions List<Property Map> matchExpressions is a list of label selector requirements. The requirements are ANDed.
- match
Labels Map<String> matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
LabelSelectorRequirement, LabelSelectorRequirementArgs
- Key string
key is the label key that the selector applies to.
- Operator string
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- Values List<string>
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- Key string
key is the label key that the selector applies to.
- Operator string
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- Values []string
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key String
key is the label key that the selector applies to.
- operator String
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values List<String>
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key string
key is the label key that the selector applies to.
- operator string
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values string[]
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key str
key is the label key that the selector applies to.
- operator str
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values Sequence[str]
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
- key String
key is the label key that the selector applies to.
- operator String
operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
- values List<String>
values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
Lifecycle, LifecycleArgs
- Post
Start LifecycleHandler PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Pre
Stop LifecycleHandler PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Post
Start LifecycleHandler PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- Pre
Stop LifecycleHandler PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start LifecycleHandler PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop LifecycleHandler PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start LifecycleHandler PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop LifecycleHandler PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post_
start LifecycleHandler PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre_
stop LifecycleHandler PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- post
Start Property Map PostStart is called immediately after a container is created. If the handler fails, the container is terminated and restarted according to its restart policy. Other management of the container blocks until the hook completes. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
- pre
Stop Property Map PreStop is called immediately before a container is terminated due to an API request or management event such as liveness/startup probe failure, preemption, resource contention, etc. The handler is not called if the container crashes or exits. The Pod's termination grace period countdown begins before the PreStop hook is executed. Regardless of the outcome of the handler, the container will eventually terminate within the Pod's termination grace period (unless delayed by finalizers). Other management of the container blocks until the hook completes or until the termination grace period is reached. More info: https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/#container-hooks
LifecycleHandler, LifecycleHandlerArgs
- Exec
Exec
Action Exec specifies the action to take.
- Http
Get HTTPGetAction HTTPGet specifies the http request to perform.
- Tcp
Socket TCPSocketAction Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- Exec
Exec
Action Exec specifies the action to take.
- Http
Get HTTPGetAction HTTPGet specifies the http request to perform.
- Tcp
Socket TCPSocketAction Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec
Exec
Action Exec specifies the action to take.
- http
Get HTTPGetAction HTTPGet specifies the http request to perform.
- tcp
Socket TCPSocketAction Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec
Exec
Action Exec specifies the action to take.
- http
Get HTTPGetAction HTTPGet specifies the http request to perform.
- tcp
Socket TCPSocketAction Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec_
Exec
Action Exec specifies the action to take.
- http_
get HTTPGetAction HTTPGet specifies the http request to perform.
- tcp_
socket TCPSocketAction Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
- exec Property Map
Exec specifies the action to take.
- http
Get Property Map HTTPGet specifies the http request to perform.
- tcp
Socket Property Map Deprecated. TCPSocket is NOT supported as a LifecycleHandler and kept for the backward compatibility. There are no validation of this field and lifecycle hooks will fail in runtime when tcp handler is specified.
LocalObjectReference, LocalObjectReferenceArgs
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name str
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
ManagedFieldsEntry, ManagedFieldsEntryArgs
- Api
Version string APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 System.Text. Json. Json Element FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
Manager is an identifier of the workflow managing these fields.
- Operation string
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- Api
Version string APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 interface{} FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
Manager is an identifier of the workflow managing these fields.
- Operation string
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JsonElement FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
Manager is an identifier of the workflow managing these fields.
- operation String
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version string APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type string FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 any FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager string
Manager is an identifier of the workflow managing these fields.
- operation string
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource string
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time string
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api_
version str APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields_
type str FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields_
v1 Any FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager str
Manager is an identifier of the workflow managing these fields.
- operation str
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource str
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time str
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JSON FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
Manager is an identifier of the workflow managing these fields.
- operation String
Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
NFSVolumeSource, NFSVolumeSourceArgs
- Path string
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Server string
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Read
Only bool readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Path string
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Server string
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- Read
Only bool readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path String
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server String
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only Boolean readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path string
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server string
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only boolean readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path str
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server str
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read_
only bool readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- path String
path that is exported by the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- server String
server is the hostname or IP address of the NFS server. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
- read
Only Boolean readOnly here will force the NFS export to be mounted with read-only permissions. Defaults to false. More info: https://kubernetes.io/docs/concepts/storage/volumes#nfs
NodeAffinity, NodeAffinityArgs
- Preferred
During List<PreferredScheduling Ignored During Execution Scheduling Term> The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- Required
During NodeScheduling Ignored During Execution Selector If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- Preferred
During []PreferredScheduling Ignored During Execution Scheduling Term The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- Required
During NodeScheduling Ignored During Execution Selector If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During List<PreferredScheduling Ignored During Execution Scheduling Term> The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During NodeScheduling Ignored During Execution Selector If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During PreferredScheduling Ignored During Execution Scheduling Term[] The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During NodeScheduling Ignored During Execution Selector If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred_
during_ Sequence[Preferredscheduling_ ignored_ during_ execution Scheduling Term] The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required_
during_ Nodescheduling_ ignored_ during_ execution Selector If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
- preferred
During List<Property Map>Scheduling Ignored During Execution The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
- required
During Property MapScheduling Ignored During Execution If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
NodeSelector, NodeSelectorArgs
- Node
Selector List<NodeTerms Selector Term> Required. A list of node selector terms. The terms are ORed.
- Node
Selector []NodeTerms Selector Term Required. A list of node selector terms. The terms are ORed.
- node
Selector List<NodeTerms Selector Term> Required. A list of node selector terms. The terms are ORed.
- node
Selector NodeTerms Selector Term[] Required. A list of node selector terms. The terms are ORed.
- node_
selector_ Sequence[Nodeterms Selector Term] Required. A list of node selector terms. The terms are ORed.
- node
Selector List<Property Map>Terms Required. A list of node selector terms. The terms are ORed.
NodeSelectorRequirement, NodeSelectorRequirementArgs
- Key string
The label key that the selector applies to.
- Operator string
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- Values List<string>
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- Key string
The label key that the selector applies to.
- Operator string
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- Values []string
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key String
The label key that the selector applies to.
- operator String
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values List<String>
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key string
The label key that the selector applies to.
- operator string
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values string[]
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key str
The label key that the selector applies to.
- operator str
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values Sequence[str]
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
- key String
The label key that the selector applies to.
- operator String
Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
- values List<String>
An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
NodeSelectorTerm, NodeSelectorTermArgs
- Match
Expressions List<NodeSelector Requirement> A list of node selector requirements by node's labels.
- Match
Fields List<NodeSelector Requirement> A list of node selector requirements by node's fields.
- Match
Expressions []NodeSelector Requirement A list of node selector requirements by node's labels.
- Match
Fields []NodeSelector Requirement A list of node selector requirements by node's fields.
- match
Expressions List<NodeSelector Requirement> A list of node selector requirements by node's labels.
- match
Fields List<NodeSelector Requirement> A list of node selector requirements by node's fields.
- match
Expressions NodeSelector Requirement[] A list of node selector requirements by node's labels.
- match
Fields NodeSelector Requirement[] A list of node selector requirements by node's fields.
- match_
expressions Sequence[NodeSelector Requirement] A list of node selector requirements by node's labels.
- match_
fields Sequence[NodeSelector Requirement] A list of node selector requirements by node's fields.
- match
Expressions List<Property Map> A list of node selector requirements by node's labels.
- match
Fields List<Property Map> A list of node selector requirements by node's fields.
ObjectFieldSelector, ObjectFieldSelectorArgs
- Field
Path string Path of the field to select in the specified API version.
- Api
Version string Version of the schema the FieldPath is written in terms of, defaults to "v1".
- Field
Path string Path of the field to select in the specified API version.
- Api
Version string Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path String Path of the field to select in the specified API version.
- api
Version String Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path string Path of the field to select in the specified API version.
- api
Version string Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field_
path str Path of the field to select in the specified API version.
- api_
version str Version of the schema the FieldPath is written in terms of, defaults to "v1".
- field
Path String Path of the field to select in the specified API version.
- api
Version String Version of the schema the FieldPath is written in terms of, defaults to "v1".
ObjectMeta, ObjectMetaArgs
- Annotations Dictionary<string, string>
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers List<string>
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels Dictionary<string, string>
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields List<Pulumi.Kubernetes. Meta. V1. Inputs. Managed Fields Entry> ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References List<Pulumi.Kubernetes. Meta. V1. Inputs. Owner Reference> List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Annotations map[string]string
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers []string
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels map[string]string
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields ManagedFields Entry ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References OwnerReference List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String,String>
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace IntegerPeriod Seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Integer
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String,String>
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<ManagedFields Entry> ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<OwnerReference> List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations {[key: string]: string}
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name string The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace numberPeriod Seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers string[]
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation number
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels {[key: string]: string}
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields meta.v1.Managed Fields Entry[] ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name string
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References meta.v1.Owner Reference[] List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link string Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Mapping[str, str]
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster_
name str The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation_
timestamp str CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion_
grace_ intperiod_ seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion_
timestamp str DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers Sequence[str]
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate_
name str GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation int
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Mapping[str, str]
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed_
fields ManagedFields Entry] ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name str
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace str
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner_
references OwnerReference] List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource_
version str An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self_
link str Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid str
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String>
Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace NumberPeriod Seconds Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Number
A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String>
Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<Property Map> ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<Property Map> List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
OwnerReference, OwnerReferenceArgs
- Api
Version string API version of the referent.
- Kind string
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
If true, this reference points to the managing controller.
- Api
Version string API version of the referent.
- Kind string
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
If true, this reference points to the managing controller.
- api
Version String API version of the referent.
- kind String
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
If true, this reference points to the managing controller.
- api
Version string API version of the referent.
- kind string
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name string
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid string
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner booleanDeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller boolean
If true, this reference points to the managing controller.
- api_
version str API version of the referent.
- kind str
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name str
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid str
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block_
owner_ booldeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller bool
If true, this reference points to the managing controller.
- api
Version String API version of the referent.
- kind String
Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
If true, this reference points to the managing controller.
PersistentVolumeClaimSpec, PersistentVolumeClaimSpecArgs
- Access
Modes List<string> accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- Data
Source TypedLocal Object Reference dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- Data
Source TypedRef Object Reference dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- Resources
Resource
Requirements resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- Selector
Pulumi.
Kubernetes. Meta. V1. Inputs. Label Selector selector is a label query over volumes to consider for binding.
- Storage
Class stringName storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- Volume
Mode string volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- Volume
Name string volumeName is the binding reference to the PersistentVolume backing this claim.
- Access
Modes []string accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- Data
Source TypedLocal Object Reference dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- Data
Source TypedRef Object Reference dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- Resources
Resource
Requirements resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- Selector
Label
Selector selector is a label query over volumes to consider for binding.
- Storage
Class stringName storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- Volume
Mode string volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- Volume
Name string volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes List<String> accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source TypedLocal Object Reference dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source TypedRef Object Reference dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
Resource
Requirements resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
Label
Selector selector is a label query over volumes to consider for binding.
- storage
Class StringName storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Mode String volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name String volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes string[] accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source TypedLocal Object Reference dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source TypedRef Object Reference dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
Resource
Requirements resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
meta.v1.
Label Selector selector is a label query over volumes to consider for binding.
- storage
Class stringName storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Mode string volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name string volumeName is the binding reference to the PersistentVolume backing this claim.
- access_
modes Sequence[str] accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data_
source TypedLocal Object Reference dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data_
source_ Typedref Object Reference dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources
Resource
Requirements resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector
Label
Selector selector is a label query over volumes to consider for binding.
- storage_
class_ strname storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume_
mode str volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume_
name str volumeName is the binding reference to the PersistentVolume backing this claim.
- access
Modes List<String> accessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
- data
Source Property Map dataSource field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source. When the AnyVolumeDataSource feature gate is enabled, dataSource contents will be copied to dataSourceRef, and dataSourceRef contents will be copied to dataSource when dataSourceRef.namespace is not specified. If the namespace is specified, then dataSourceRef will not be copied to dataSource.
- data
Source Property MapRef dataSourceRef specifies the object from which to populate the volume with data, if a non-empty volume is desired. This may be any object from a non-empty API group (non core object) or a PersistentVolumeClaim object. When this field is specified, volume binding will only succeed if the type of the specified object matches some installed volume populator or dynamic provisioner. This field will replace the functionality of the dataSource field and as such if both fields are non-empty, they must have the same value. For backwards compatibility, when namespace isn't specified in dataSourceRef, both fields (dataSource and dataSourceRef) will be set to the same value automatically if one of them is empty and the other is non-empty. When namespace is specified in dataSourceRef, dataSource isn't set to the same value and must be empty. There are three important differences between dataSource and dataSourceRef: * While dataSource only allows two specific types of objects, dataSourceRef allows any non-core object, as well as PersistentVolumeClaim objects.
- While dataSource ignores disallowed values (dropping them), dataSourceRef preserves all values, and generates an error if a disallowed value is specified.
- While dataSource only allows local objects, dataSourceRef allows objects in any namespaces. (Beta) Using this field requires the AnyVolumeDataSource feature gate to be enabled. (Alpha) Using the namespace field of dataSourceRef requires the CrossNamespaceVolumeDataSource feature gate to be enabled.
- resources Property Map
resources represents the minimum resources the volume should have. If RecoverVolumeExpansionFailure feature is enabled users are allowed to specify resource requirements that are lower than previous value but must still be higher than capacity recorded in the status field of the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
- selector Property Map
selector is a label query over volumes to consider for binding.
- storage
Class StringName storageClassName is the name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
- volume
Mode String volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
- volume
Name String volumeName is the binding reference to the PersistentVolume backing this claim.
PersistentVolumeClaimTemplate, PersistentVolumeClaimTemplateArgs
- Spec
Persistent
Volume Claim Spec The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- Spec
Persistent
Volume Claim Spec The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- Metadata
Object
Meta May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Persistent
Volume Claim Spec The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
Object
Meta May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Persistent
Volume Claim Spec The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
meta.v1.
Object Meta May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Persistent
Volume Claim Spec The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata
Object
Meta May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec Property Map
The specification for the PersistentVolumeClaim. The entire content is copied unchanged into the PVC that gets created from this template. The same fields as in a PersistentVolumeClaim are also valid here.
- metadata Property Map
May contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
PersistentVolumeClaimVolumeSource, PersistentVolumeClaimVolumeSourceArgs
- claim
Name String claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only Boolean readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim
Name string claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only boolean readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim_
name str claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read_
only bool readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
- claim
Name String claimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#persistentvolumeclaims
- read
Only Boolean readOnly Will force the ReadOnly setting in VolumeMounts. Default false.
PhotonPersistentDiskVolumeSource, PhotonPersistentDiskVolumeSourceArgs
PodAffinity, PodAffinityArgs
- Preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During List<PodScheduling Ignored During Execution Affinity Term> If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- Preferred
During []WeightedScheduling Ignored During Execution Pod Affinity Term The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During []PodScheduling Ignored During Execution Affinity Term If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<PodScheduling Ignored During Execution Affinity Term> If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During WeightedScheduling Ignored During Execution Pod Affinity Term[] The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During PodScheduling Ignored During Execution Affinity Term[] If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred_
during_ Sequence[Weightedscheduling_ ignored_ during_ execution Pod Affinity Term] The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required_
during_ Sequence[Podscheduling_ ignored_ during_ execution Affinity Term] If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<Property Map>Scheduling Ignored During Execution The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<Property Map>Scheduling Ignored During Execution If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
PodAffinityTerm, PodAffinityTermArgs
- Topology
Key string This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- Label
Selector Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector A label query over a set of resources, in this case pods.
- Namespace
Selector Pulumi.Kubernetes. Meta. V1. Inputs. Label Selector A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- Namespaces List<string>
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- Topology
Key string This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- Label
Selector LabelSelector A label query over a set of resources, in this case pods.
- Namespace
Selector LabelSelector A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- Namespaces []string
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key String This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector LabelSelector A label query over a set of resources, in this case pods.
- namespace
Selector LabelSelector A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces List<String>
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key string This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector meta.v1.Label Selector A label query over a set of resources, in this case pods.
- namespace
Selector meta.v1.Label Selector A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces string[]
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology_
key str This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label_
selector LabelSelector A label query over a set of resources, in this case pods.
- namespace_
selector LabelSelector A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces Sequence[str]
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
- topology
Key String This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
- label
Selector Property Map A label query over a set of resources, in this case pods.
- namespace
Selector Property Map A label query over the set of namespaces that the term applies to. The term is applied to the union of the namespaces selected by this field and the ones listed in the namespaces field. null selector and null or empty namespaces list means "this pod's namespace". An empty selector ({}) matches all namespaces.
- namespaces List<String>
namespaces specifies a static list of namespace names that the term applies to. The term is applied to the union of the namespaces listed in this field and the ones selected by namespaceSelector. null or empty namespaces list and null namespaceSelector means "this pod's namespace".
PodAntiAffinity, PodAntiAffinityArgs
- Preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During List<PodScheduling Ignored During Execution Affinity Term> If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- Preferred
During []WeightedScheduling Ignored During Execution Pod Affinity Term The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- Required
During []PodScheduling Ignored During Execution Affinity Term If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<WeightedScheduling Ignored During Execution Pod Affinity Term> The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<PodScheduling Ignored During Execution Affinity Term> If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During WeightedScheduling Ignored During Execution Pod Affinity Term[] The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During PodScheduling Ignored During Execution Affinity Term[] If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred_
during_ Sequence[Weightedscheduling_ ignored_ during_ execution Pod Affinity Term] The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required_
during_ Sequence[Podscheduling_ ignored_ during_ execution Affinity Term] If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
- preferred
During List<Property Map>Scheduling Ignored During Execution The scheduler will prefer to schedule pods to nodes that satisfy the anti-affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling anti-affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
- required
During List<Property Map>Scheduling Ignored During Execution If the anti-affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the anti-affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
PodDNSConfig, PodDNSConfigArgs
- Nameservers List<string>
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- Options
List<Pod
DNSConfig Option> A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- Searches List<string>
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- Nameservers []string
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- Options
[]Pod
DNSConfig Option A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- Searches []string
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- nameservers List<String>
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- options
List<Pod
DNSConfig Option> A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- searches List<String>
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- nameservers string[]
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- options
Pod
DNSConfig Option[] A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- searches string[]
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- nameservers Sequence[str]
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- options
Sequence[Pod
DNSConfig Option] A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- searches Sequence[str]
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
- nameservers List<String>
A list of DNS name server IP addresses. This will be appended to the base nameservers generated from DNSPolicy. Duplicated nameservers will be removed.
- options List<Property Map>
A list of DNS resolver options. This will be merged with the base options generated from DNSPolicy. Duplicated entries will be removed. Resolution options given in Options will override those that appear in the base DNSPolicy.
- searches List<String>
A list of DNS search domains for host-name lookup. This will be appended to the base search paths generated from DNSPolicy. Duplicated search paths will be removed.
PodDNSConfigOption, PodDNSConfigOptionArgs
PodOS, PodOSArgs
- Name string
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
- Name string
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
- name String
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
- name string
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
- name str
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
- name String
Name is the name of the operating system. The currently supported values are linux and windows. Additional value may be defined in future and can be one of: https://github.com/opencontainers/runtime-spec/blob/master/config.md#platform-specific-configuration Clients should expect to handle additional values and treat unrecognized values in this field as os: null
PodReadinessGate, PodReadinessGateArgs
- Condition
Type string ConditionType refers to a condition in the pod's condition list with matching type.
- Condition
Type string ConditionType refers to a condition in the pod's condition list with matching type.
- condition
Type String ConditionType refers to a condition in the pod's condition list with matching type.
- condition
Type string ConditionType refers to a condition in the pod's condition list with matching type.
- condition_
type str ConditionType refers to a condition in the pod's condition list with matching type.
- condition
Type String ConditionType refers to a condition in the pod's condition list with matching type.
PodResourceClaim, PodResourceClaimArgs
- Name string
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- Source
Claim
Source Source describes where to find the ResourceClaim.
- Name string
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- Source
Claim
Source Source describes where to find the ResourceClaim.
- name String
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- source
Claim
Source Source describes where to find the ResourceClaim.
- name string
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- source
Claim
Source Source describes where to find the ResourceClaim.
- name str
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- source
Claim
Source Source describes where to find the ResourceClaim.
- name String
Name uniquely identifies this resource claim inside the pod. This must be a DNS_LABEL.
- source Property Map
Source describes where to find the ResourceClaim.
PodSchedulingGate, PodSchedulingGateArgs
- Name string
Name of the scheduling gate. Each scheduling gate must have a unique name field.
- Name string
Name of the scheduling gate. Each scheduling gate must have a unique name field.
- name String
Name of the scheduling gate. Each scheduling gate must have a unique name field.
- name string
Name of the scheduling gate. Each scheduling gate must have a unique name field.
- name str
Name of the scheduling gate. Each scheduling gate must have a unique name field.
- name String
Name of the scheduling gate. Each scheduling gate must have a unique name field.
PodSecurityContext, PodSecurityContextArgs
- Fs
Group int A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- Fs
Group stringChange Policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- Run
As intGroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Run
As boolNon Root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- Run
As intUser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Se
Linux SELinuxOptions Options The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Seccomp
Profile SeccompProfile The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- Supplemental
Groups List<int> A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- Sysctls List<Sysctl>
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- Windows
Options WindowsSecurity Context Options The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
- Fs
Group int A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- Fs
Group stringChange Policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- Run
As intGroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Run
As boolNon Root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- Run
As intUser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Se
Linux SELinuxOptions Options The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- Seccomp
Profile SeccompProfile The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- Supplemental
Groups []int A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- Sysctls []Sysctl
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- Windows
Options WindowsSecurity Context Options The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
- fs
Group Integer A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- fs
Group StringChange Policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- run
As IntegerGroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- run
As BooleanNon Root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- run
As IntegerUser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- se
Linux SELinuxOptions Options The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- seccomp
Profile SeccompProfile The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- supplemental
Groups List<Integer> A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- sysctls List<Sysctl>
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- windows
Options WindowsSecurity Context Options The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
- fs
Group number A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- fs
Group stringChange Policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- run
As numberGroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- run
As booleanNon Root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- run
As numberUser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- se
Linux SELinuxOptions Options The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- seccomp
Profile SeccompProfile The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- supplemental
Groups number[] A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- sysctls Sysctl[]
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- windows
Options WindowsSecurity Context Options The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
- fs_
group int A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- fs_
group_ strchange_ policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- run_
as_ intgroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- run_
as_ boolnon_ root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- run_
as_ intuser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- se_
linux_ SELinuxoptions Options The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- seccomp_
profile SeccompProfile The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- supplemental_
groups Sequence[int] A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- sysctls Sequence[Sysctl]
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- windows_
options WindowsSecurity Context Options The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
- fs
Group Number A special supplemental group that applies to all containers in a pod. Some volume types allow the Kubelet to change the ownership of that volume to be owned by the pod:
- The owning GID will be the FSGroup 2. The setgid bit is set (new files created in the volume will be owned by FSGroup) 3. The permission bits are OR'd with rw-rw----
If unset, the Kubelet will not modify the ownership and permissions of any volume. Note that this field cannot be set when spec.os.name is windows.
- fs
Group StringChange Policy fsGroupChangePolicy defines behavior of changing ownership and permission of the volume before being exposed inside Pod. This field will only apply to volume types which support fsGroup based ownership(and permissions). It will have no effect on ephemeral volume types such as: secret, configmaps and emptydir. Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used. Note that this field cannot be set when spec.os.name is windows.
- run
As NumberGroup The GID to run the entrypoint of the container process. Uses runtime default if unset. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- run
As BooleanNon Root Indicates that the container must run as a non-root user. If true, the Kubelet will validate the image at runtime to ensure that it does not run as UID 0 (root) and fail to start the container if it does. If unset or false, no such validation will be performed. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
- run
As NumberUser The UID to run the entrypoint of the container process. Defaults to user specified in image metadata if unspecified. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- se
Linux Property MapOptions The SELinux context to be applied to all containers. If unspecified, the container runtime will allocate a random SELinux context for each container. May also be set in SecurityContext. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence for that container. Note that this field cannot be set when spec.os.name is windows.
- seccomp
Profile Property Map The seccomp options to use by the containers in this pod. Note that this field cannot be set when spec.os.name is windows.
- supplemental
Groups List<Number> A list of groups applied to the first process run in each container, in addition to the container's primary GID, the fsGroup (if specified), and group memberships defined in the container image for the uid of the container process. If unspecified, no additional groups are added to any container. Note that group memberships defined in the container image for the uid of the container process are still effective, even if they are not included in this list. Note that this field cannot be set when spec.os.name is windows.
- sysctls List<Property Map>
Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported sysctls (by the container runtime) might fail to launch. Note that this field cannot be set when spec.os.name is windows.
- windows
Options Property Map The Windows specific settings applied to all containers. If unspecified, the options within a container's SecurityContext will be used. If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence. Note that this field cannot be set when spec.os.name is linux.
PodSpec, PodSpecArgs
- Containers List<Container>
List of containers belonging to the pod. Containers cannot currently be added or removed. There must be at least one container in a Pod. Cannot be updated.
- Active
Deadline intSeconds Optional duration in seconds the pod may be active on the node relative to StartTime before the system will actively try to mark it failed and kill associated containers. Value must be a positive integer.
- Affinity Affinity
If specified, the pod's scheduling constraints
- Automount
Service boolAccount Token AutomountServiceAccountToken indicates whether a service account token should be automatically mounted.
- Dns
Config PodDNSConfig Specifies the DNS parameters of a pod. Parameters specified here will be merged to the generated DNS configuration based on DNSPolicy.
- Dns
Policy string Set DNS policy for the pod. Defaults to "ClusterFirst". Valid values are 'ClusterFirstWithHostNet', 'ClusterFirst', 'Default' or 'None'. DNS parameters given in DNSConfig will be merged with the policy selected with DNSPolicy. To have DNS options set along with hostNetwork, you have to specify DNS policy explicitly to 'ClusterFirstWithHostNet'.
- Enable
Service boolLinks EnableServiceLinks indicates whether information about services should be injected into pod's environment variables, matching the syntax of Docker links. Optional: Defaults to true.
- Ephemeral
Containers List<EphemeralContainer> List of ephemeral containers run in this pod. Ephemeral containers may be run in an existing pod to perform user-initiated actions such as debugging. This list cannot be specified when creating a pod, and it cannot be modified by updating the pod spec. In order to add an ephemeral container to an existing pod, use the pod's ephemeralcontainers subresource.
- Host
Aliases List<HostAlias> HostAliases is an optional list of hosts and IPs that will be injected into the pod's hosts file if specified. This is only valid for non-hostNetwork pods.
- Host
IPC bool Use the host's ipc namespace. Optional: Default to false.
- Host
Network bool Host networking requested for this pod. Use the host's network namespace. If this option is set, the ports that will be used must be specified. Default to false.
- Host
PID bool Use the host's pid namespace. Optional: Default to false.
- Host
Users bool Use the host's user namespace. Optional: Default to true. If set to true or not present, the pod will be run in the host user namespace, useful for when the pod needs a feature only available to the host user namespace, such as loading a kernel module with CAP_SYS_MODULE. When set to false, a new userns is created for the pod. Setting false is useful for mitigating container breakout vulnerabilities even allowing users to run their containers as root without actually having root privileges on the host. This field is alpha-level and is only honored by servers that enable the UserNamespacesSupport feature.
- Hostname string
Specifies the hostname of the Pod If not specified, the pod's hostname will be set to a system-defined value.
- Image
Pull List<LocalSecrets Object Reference> ImagePullSecrets is an optional list of references to secrets in the same namespace to use for pulling any of the images used by this PodSpec. If specified, these secrets will be passed to individual puller implementations for them to use. More info: https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
- Init
Containers List<Container> List of initialization containers belonging to the pod. Init containers are executed in order prior to containers being started. If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy. The name for an init container or normal container must be unique among all containers. Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes. The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit for each resource type, and then using the max of of that value or the sum of the normal containers. Limits are applied to init containers in a similar fashion. Init containers cannot currently be added or removed. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
- Node
Name string NodeName is a request to schedule this pod onto a specific node. If it is non-empty, the scheduler simply schedules this pod onto that node, assuming that it fits resource requirements.
- Node
Selector Dictionary<string, string> NodeSelector is a selector which must be true for the pod to fit on a node. Selector which must match a node's labels for the pod to be scheduled on that node. More info: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
- Os
Pod
OS Specifies the OS of the containers in the pod. Some pod and container fields are restricted if this is set.
If the OS field is set to linux, the following fields must be unset: -securityContext.windowsOptions
If the OS field is set to windows, following fields must be unset: - spec.hostPID - spec.hostIPC - spec.hostUsers - spec.securityContext.seLinuxOptions - spec.securityContext.seccompProfile - spec.securityContext.fsGroup - spec.securityContext.fsGroupChangePolicy - spec.securityContext.sysctls - spec.shareProcessNamespace - spec.securityContext.runAsUser - spec.securityContext.runAsGroup - spec.securityContext.supplementalGroups - spec.containers[].securityContext.seLinuxOptions - spec.containers[].securityContext.seccompProfile - spec.containers[].securityContext.capabilities - spec.containers[].securityContext.readOnlyRootFilesystem - spec.containers[].securityContext.privileged - spec.containers[].securityContext.allowPrivilegeEscalation - spec.containers[].securityContext.procMount - spec.containers[].securityContext.runAsUser - spec.containers[*].securityContext.runAsGroup
- Overhead Dictionary<string, string>
Overhead represents the resource overhead associated with running a pod for a given RuntimeClass. This field will be autopopulated at admission time by the RuntimeClass admission controller. If the RuntimeClass admission controller is enabled, overhead must not be set in Pod create requests. The RuntimeClass admission controller will reject Pod create requests which have the overhead already set. If RuntimeClass is configured and selected in the PodSpec, Overhead will be set to the value defined in the corresponding RuntimeClass, otherwise it will remain unset and treated as zero. More info: https://git.k8s.io/enhancements/keps/sig-node/688-pod-overhead/README.md
- Preemption
Policy string PreemptionPolicy is the Policy for preempting pods with lower priority. One of Never, PreemptLowerPriority. Defaults to PreemptLowerPriority if unset.
- Priority int
The priority value. Various system components use this field to find the priority of the pod. When Priority Admission Controller is enabled, it prevents users from setting this field. The admission controller populates this field from PriorityClassName. The higher the value, the higher the priority.
- Priority
Class stringName If specified, indicates the pod's priority. "system-node-critical" and "system-cluster-critical" are two special keywords which indicate the highest priorities with the former being the highest priority. Any other name must be defined by creating a PriorityClass object with that name. If not specified, the pod priority will be default or zero if there is no default.
- Readiness
Gates List<PodReadiness Gate> If specified, all readiness gates will be evaluated for pod readiness. A pod is ready when all its containers are ready AND all conditions specified in the readiness gates have status equal to "True" More info: https://git.k8s.io/enhancements/keps/sig-network/580-pod-readiness-gates
- Resource
Claims List<PodResource Claim> ResourceClaims defines which ResourceClaims must be allocated and reserved before the Pod is allowed to start. The resources will be made available to those containers which consume them by name.
This is an alpha field and requires enabling the DynamicResourceAllocation feature gate.
This field is immutable.
- Restart
Policy string Restart policy for all containers within the pod. One of Always, OnFailure, Never. In some contexts, only a subset of those values may be permitted. Default to Always. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
- Runtime
Class stringName RuntimeClassName refers to a RuntimeClass object in the node.k8s.io group, which should be used to run this pod. If no RuntimeClass resource matches the named class, the pod will not be run. If unset or empty, the "legacy" RuntimeClass will be used, which is an implicit class with an empty definition that uses the default runtime handler. More info: https://git.k8s.io/enhancements/keps/sig-node/585-runtime-class
- Scheduler
Name string If specified, the pod will be dispatched by specified scheduler. If not specified, the pod will be dispatched by default scheduler.
- Scheduling
Gates List<PodScheduling Gate> SchedulingGates is an opaque list of values that if specified will block scheduling the pod. If schedulingGates is not empty, the pod will stay in the SchedulingGated state and the scheduler will not attempt to schedule the pod.
SchedulingGates can only be set at pod creation time, and be removed only afterwards.
This is a beta feature enabled by the PodSchedulingReadiness feature gate.
- Security
Context PodSecurity Context SecurityContext holds pod-level security attributes and common container settings. Optional: Defaults to empty. See type description for default values of each field.
- Service
Account string DeprecatedServiceAccount is a depreciated alias for ServiceAccountName. Deprecated: Use serviceAccountName instead.
- Service
Account stringName ServiceAccountName is the name of the ServiceAccount to use to run this pod. More info: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
- Set
Hostname boolAs FQDN If true the pod's hostname will be configured as the pod's FQDN, rather than the leaf name (the default). In Linux containers, this means setting the FQDN in the hostname field of the kernel (the nodename field of struct utsname). In Windows containers, this means setting the registry value of hostname for the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters to FQDN. If a pod does not have FQDN, this has no effect. Default to false.
- bool
Share a single process namespace between all of the containers in a pod. When this is set containers will be able to view and signal processes from other containers in the same pod, and the first process in each container will not be assigned PID 1. HostPID and ShareProcessNamespace cannot both be set. Optional: Default to false.
- Subdomain string
If specified, the fully qualified Pod hostname will be "...svc.". If not specified, the pod will not have a domainname at all.
- Termination
Grace intPeriod Seconds Optional duration in seconds the pod needs to terminate gracefully. May be decreased in delete request. Value must be non-negative integer. The value zero indicates stop immediately via the kill signal (no opportunity to shut down). If this value is nil, the default grace period will be used instead. The grace period is the duration in seconds after the processes running in the pod are sent a termination signal and the time when the processes are forcibly halted with a kill signal. Set this value longer than the expected cleanup time for your process. Defaults to 30 seconds.
- Tolerations List<Toleration>
If specified, the pod's tolerations.
- Topology
Spread List<TopologyConstraints Spread Constraint> TopologySpreadConstraints describes how a group of pods ought to spread across topology domains. Scheduler will schedule pods in a way which abides by the constraints. All topologySpreadConstraints are ANDed.
- Volumes List<Volume>
List of volumes that can be mounted by containers belonging to the pod. More info: https://kubernetes.io/docs/concepts/storage/volumes
- Containers []Container
List of containers belonging to the pod. Containers cannot currently be added or removed. There must be at least one container in a Pod. Cannot be updated.
- Active
Deadline intSeconds Optional duration in seconds the pod may be active on the node relative to StartTime before the system will actively try to mark it failed and kill associated containers. Value must be a positive integer.
- Affinity Affinity
If specified, the pod's scheduling constraints
- Automount
Service boolAccount Token AutomountServiceAccountToken indicates whether a service account token should be automatically mounted.
- Dns
Config PodDNSConfig Specifies the DNS parameters of a pod. Parameters specified here will be merged to the generated DNS configuration based on DNSPolicy.
- Dns
Policy string Set DNS policy for the pod. Defaults to "ClusterFirst". Valid values are 'ClusterFirstWithHostNet', 'ClusterFirst', 'Default' or 'None'. DNS parameters given in DNSConfig will be merged with the policy selected with DNSPolicy. To have DNS options set along with hostNetwork, you have to specify DNS policy explicitly to 'ClusterFirstWithHostNet'.
- Enable
Service boolLinks EnableServiceLinks indicates whether information about services should be injected into pod's environment variables, matching the syntax of Docker links. Optional: Defaults to true.
- Ephemeral
Containers []EphemeralContainer List of ephemeral containers run in this pod. Ephemeral containers may be run in an existing pod to perform user-initiated actions such as debugging. This list cannot be specified when creating a pod, and it cannot be modified by updating the pod spec. In order to add an ephemeral container to an existing pod, use the pod's ephemeralcontainers subresource.
- Host
Aliases []HostAlias HostAliases is an optional list of hosts and IPs that will be injected into the pod's hosts file if specified. This is only valid for non-hostNetwork pods.
- Host
IPC bool Use the host's ipc namespace. Optional: Default to false.
- Host
Network bool Host networking requested for this pod. Use the host's network namespace. If this option is set, the ports that will be used must be specified. Default to false.
- Host
PID bool Use the host's pid namespace. Optional: Default to false.
- Host
Users bool Use the host's user namespace. Optional: Default to true. If set to true or not present, the pod will be run in the host user namespace, useful for when the pod needs a feature only available to the host user namespace, such as loading a kernel module with CAP_SYS_MODULE. When set to false, a new userns is created for the pod. Setting false is useful for mitigating container breakout vulnerabilities even allowing users to run their containers as root without actually having root privileges on the host. This field is alpha-level and is only honored by servers that enable the UserNamespacesSupport feature.
- Hostname string
Specifies the hostname of the Pod If not specified, the pod's hostname will be set to a system-defined value.
- Image
Pull []LocalSecrets Object Reference ImagePullSecrets is an optional list of references to secrets in the same namespace to use for pulling any of the images used by this PodSpec. If specified, these secrets will be passed to individual puller implementations for them to use. More info: https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
- Init
Containers []Container List of initialization containers belonging to the pod. Init containers are executed in order prior to containers being started. If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy. The name for an init container or normal container must be unique among all containers. Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes. The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit for each resource type, and then using the max of of that value or the sum of the normal containers. Limits are applied to init containers in a similar fashion. Init containers cannot currently be added or removed. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
- Node
Name string NodeName is a request to schedule this pod onto a specific node. If it is non-empty, the scheduler simply schedules this pod onto that node, assuming that it fits resource requirements.
- Node
Selector map[string]string NodeSelector is a selector which must be true for the pod to fit on a node. Selector which must match a node's labels for the pod to be scheduled on that node. More info: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
- Os
Pod
OS Specifies the OS of the containers in the pod. Some pod and container fields are restricted if this is set.
If the OS field is set to linux, the following fields must be unset: -securityContext.windowsOptions
If the OS field is set to windows, following fields must be unset: - spec.hostPID - spec.hostIPC - spec.hostUsers - spec.securityContext.seLinuxOptions - spec.securityContext.seccompProfile - spec.securityContext.fsGroup - spec.securityContext.fsGroupChangePolicy - spec.securityContext.sysctls - spec.shareProcessNamespace - spec.securityContext.runAsUser - spec.securityContext.runAsGroup - spec.securityContext.supplementalGroups - spec.containers[].securityContext.seLinuxOptions - spec.containers[].securityContext.seccompProfile - spec.containers[].securityContext.capabilities - spec.containers[].securityContext.readOnlyRootFilesystem - spec.containers[].securityContext.privileged - spec.containers[].securityContext.allowPrivilegeEscalation - spec.containers[].securityContext.procMount - spec.containers[].securityContext.runAsUser - spec.containers[*].securityContext.runAsGroup
- Overhead map[string]string
Overhead represents the resource overhead associated with running a pod for a given RuntimeClass. This field will be autopopulated at admission time by the RuntimeClass admission controller. If the RuntimeClass admission controller is enabled, overhead must not be set in Pod create requests. The RuntimeClass admission controller will reject Pod create requests which have the overhead already set. If RuntimeClass is configured and selected in the PodSpec, Overhead will be set to the value defined in the corresponding RuntimeClass, otherwise it will remain unset and treated as zero. More info: https://git.k8s.io/enhancements/keps/sig-node/688-pod-overhead/README.md
- Preemption
Policy string PreemptionPolicy is the Policy for preempting pods with lower priority. One of Never, PreemptLowerPriority. Defaults to PreemptLowerPriority if unset.
- Priority int
The priority value. Various system components use this field to find the priority of the pod. When Priority Admission Controller is enabled, it prevents users from setting this field. The admission controller populates this field from PriorityClassName. The higher the value, the higher the priority.
- Priority
Class stringName If specified, indicates the pod's priority. "system-node-critical" and "system-cluster-critical" are two special keywords which indicate the highest priorities with the former being the highest priority. Any other name must be defined by creating a PriorityClass object with that name. If not specified, the pod priority will be default or zero if there is no default.
- Readiness
Gates []PodReadiness Gate If specified, all readiness gates will be evaluated for pod readiness. A pod is ready when all its containers are ready AND all conditions specified in the readiness gates have status equal to "True" More info: https://git.k8s.io/enhancements/keps/sig-network/580-pod-readiness-gates
- Resource
Claims []PodResource Claim ResourceClaims defines which ResourceClaims must be allocated and reserved before the Pod is allowed to start. The resources will be made available to those containers which consume them by name.
This is an alpha field and requires enabling the DynamicResourceAllocation feature gate.
This field is immutable.
- Restart
Policy string Restart policy for all containers within the pod. One of Always, OnFailure, Never. In some contexts, only a subset of those values may be permitted. Default to Always. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
- Runtime
Class stringName RuntimeClassName refers to a RuntimeClass object in the node.k8s.io group, which should be used to run this pod. If no RuntimeClass resource matches the named class, the pod will not be run. If unset or empty, the "legacy" RuntimeClass will be used, which is an implicit class with an empty definition that uses the default runtime handler. More info: https://git.k8s.io/enhancements/keps/sig-node/585-runtime-class
- Scheduler
Name string If specified, the pod will be dispatched by specified scheduler. If not specified, the pod will be dispatched by default scheduler.
- Scheduling
Gates []PodScheduling Gate SchedulingGates is an opaque list of values that if specified will block scheduling the pod. If schedulingGates is not empty, the pod will stay in the SchedulingGated state and the scheduler will not attempt to schedule the pod.
SchedulingGates can only be set at pod creation time, and be removed only afterwards.
This is a beta feature enabled by the PodSchedulingReadiness feature gate.
- Security
Context PodSecurity Context SecurityContext holds pod-level security attributes and common container settings. Optional: Defaults to empty. See type description for default values of each field.
- Service
Account string DeprecatedServiceAccount is a depreciated alias for ServiceAccountName. Deprecated: Use serviceAccountName instead.
- Service
Account stringName ServiceAccountName is the name of the ServiceAccount to use to run this pod. More info: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
- Set
Hostname boolAs FQDN If true the pod's hostname will be configured as the pod's FQDN, rather than the leaf name (the default). In Linux containers, this means setting the FQDN in the hostname field of the kernel (the nodename field of struct utsname). In Windows containers, this means setting the registry value of hostname for the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters to FQDN. If a pod does not have FQDN, this has no effect. Default to false.
- bool
Share a single process namespace between all of the containers in a pod. When this is set containers will be able to view and signal processes from other containers in the same pod, and the first process in each container will not be assigned PID 1. HostPID and ShareProcessNamespace cannot both be set. Optional: Default to false.
- Subdomain string
If specified, the fully qualified Pod hostname will be "...svc.". If not specified, the pod will not have a domainname at all.
- Termination
Grace intPeriod Seconds Optional duration in seconds the pod needs to terminate gracefully. May be decreased in delete request. Value must be non-negative integer. The value zero indicates stop immediately via the kill signal (no opportunity to shut down). If this value is nil, the default grace period will be used instead. The grace period is the duration in seconds after the processes running in the pod are sent a termination signal and the time when the processes are forcibly halted with a kill signal. Set this value longer than the expected cleanup time for your process. Defaults to 30 seconds.
- Tolerations []Toleration
If specified, the pod's tolerations.
- Topology
Spread []TopologyConstraints Spread Constraint TopologySpreadConstraints describes how a group of pods ought to spread across topology domains. Scheduler will schedule pods in a way which abides by the constraints. All topologySpreadConstraints are ANDed.
- Volumes []Volume
List of volumes that can be mounted by containers belonging to the pod. More info: https://kubernetes.io/docs/concepts/storage/volumes
- containers List<Container>
List of containers belonging to the pod. Containers cannot currently be added or removed. There must be at least one container in a Pod. Cannot be updated.
- active
Deadline IntegerSeconds Optional duration in seconds the pod may be active on the node relative to StartTime before the system will actively try to mark it failed and kill associated containers. Value must be a positive integer.
- affinity Affinity
If specified, the pod's scheduling constraints
- automount
Service BooleanAccount Token AutomountServiceAccountToken indicates whether a service account token should be automatically mounted.
- dns
Config PodDNSConfig Specifies the DNS parameters of a pod. Parameters specified here will be merged to the generated DNS configuration based on DNSPolicy.
- dns
Policy String Set DNS policy for the pod. Defaults to "ClusterFirst". Valid values are 'ClusterFirstWithHostNet', 'ClusterFirst', 'Default' or 'None'. DNS parameters given in DNSConfig will be merged with the policy selected with DNSPolicy. To have DNS options set along with hostNetwork, you have to specify DNS policy explicitly to 'ClusterFirstWithHostNet'.
- enable
Service BooleanLinks EnableServiceLinks indicates whether information about services should be injected into pod's environment variables, matching the syntax of Docker links. Optional: Defaults to true.
- ephemeral
Containers List<EphemeralContainer> List of ephemeral containers run in this pod. Ephemeral containers may be run in an existing pod to perform user-initiated actions such as debugging. This list cannot be specified when creating a pod, and it cannot be modified by updating the pod spec. In order to add an ephemeral container to an existing pod, use the pod's ephemeralcontainers subresource.
- host
Aliases List<HostAlias> HostAliases is an optional list of hosts and IPs that will be injected into the pod's hosts file if specified. This is only valid for non-hostNetwork pods.
- host
IPC Boolean Use the host's ipc namespace. Optional: Default to false.
- host
Network Boolean Host networking requested for this pod. Use the host's network namespace. If this option is set, the ports that will be used must be specified. Default to false.
- host
PID Boolean Use the host's pid namespace. Optional: Default to false.
- host
Users Boolean Use the host's user namespace. Optional: Default to true. If set to true or not present, the pod will be run in the host user namespace, useful for when the pod needs a feature only available to the host user namespace, such as loading a kernel module with CAP_SYS_MODULE. When set to false, a new userns is created for the pod. Setting false is useful for mitigating container breakout vulnerabilities even allowing users to run their containers as root without actually having root privileges on the host. This field is alpha-level and is only honored by servers that enable the UserNamespacesSupport feature.
- hostname String
Specifies the hostname of the Pod If not specified, the pod's hostname will be set to a system-defined value.
- image
Pull List<LocalSecrets Object Reference> ImagePullSecrets is an optional list of references to secrets in the same namespace to use for pulling any of the images used by this PodSpec. If specified, these secrets will be passed to individual puller implementations for them to use. More info: https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
- init
Containers List<Container> List of initialization containers belonging to the pod. Init containers are executed in order prior to containers being started. If any init container fails, the pod is considered to have failed and is handled according to its restartPolicy. The name for an init container or normal container must be unique among all containers. Init containers may not have Lifecycle actions, Readiness probes, Liveness probes, or Startup probes. The resourceRequirements of an init container are taken into account during scheduling by finding the highest request/limit for each resource type, and then using the max of of that value or the sum of the normal containers. Limits are applied to init containers in a similar fashion. Init containers cannot currently be added or removed. Cannot be updated. More info: https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
- node
Name String NodeName is a request to schedule this pod onto a specific node. If it is non-empty, the scheduler simply schedules this pod onto that node, assuming that it fits resource requirements.
- node
Selector Map<String,String> NodeSelector is a selector which must be true for the pod to fit on a node. Selector which must match a node's labels for the pod to be scheduled on that node. More info: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
- os
Pod
OS Specifies the OS of the containers in the pod. Some pod and container fields are restricted if this is set.
If the OS field is set to linux, the following fields must be unset: -securityContext.windowsOptions
If the OS field is set to windows, following fields must be unset: - spec.hostPID - spec.hostIPC - spec.hostUsers - spec.securityContext.seLinuxOptions - spec.securityContext.seccompProfile - spec.securityContext.fsGroup - spec.securityContext.fsGroupChangePolicy - spec.securityContext.sysctls - spec.shareProcessNamespace - spec.securityContext.runAsUser - spec.securityContext.runAsGroup - spec.securityContext.supplementalGroups - spec.containers[].securityContext.seLinuxOptions - spec.containers[].securityContext.seccompProfile - spec.containers[].securityContext.capabilities - spec.containers[].securityContext.readOnlyRootFilesystem - spec.containers[].securityContext.privileged - spec.containers[].securityContext.allowPrivilegeEscalation - spec.containers[].securityContext.procMount - spec.containers[].securityContext.runAsUser - spec.containers[*].securityContext.runAsGroup
- overhead Map<String,String>
Overhead represents the resource overhead associated with running a pod for a given RuntimeClass. This field will be autopopulated at admission time by the RuntimeClass admission controller. If the RuntimeClass admission controller is enabled, overhead must not be set in Pod