1. Packages
  2. Oracle Cloud Infrastructure
  3. API Docs
  4. AiVision
  5. getModel
Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi

oci.AiVision.getModel

Explore with Pulumi AI

oci logo
Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi

    This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.

    Gets a Model by identifier

    Example Usage

    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Oci = Pulumi.Oci;
    
    return await Deployment.RunAsync(() => 
    {
        var testModel = Oci.AiVision.GetModel.Invoke(new()
        {
            ModelId = oci_ai_vision_model.Test_model.Id,
        });
    
    });
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-oci/sdk/go/oci/AiVision"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := AiVision.GetModel(ctx, &aivision.GetModelArgs{
    			ModelId: oci_ai_vision_model.Test_model.Id,
    		}, nil)
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.oci.AiVision.AiVisionFunctions;
    import com.pulumi.oci.AiVision.inputs.GetModelArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
                .modelId(oci_ai_vision_model.test_model().id())
                .build());
    
        }
    }
    
    import pulumi
    import pulumi_oci as oci
    
    test_model = oci.AiVision.get_model(model_id=oci_ai_vision_model["test_model"]["id"])
    
    import * as pulumi from "@pulumi/pulumi";
    import * as oci from "@pulumi/oci";
    
    const testModel = oci.AiVision.getModel({
        modelId: oci_ai_vision_model.test_model.id,
    });
    
    variables:
      testModel:
        fn::invoke:
          Function: oci:AiVision:getModel
          Arguments:
            modelId: ${oci_ai_vision_model.test_model.id}
    

    Using getModel

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
    function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>
    def get_model(model_id: Optional[str] = None,
                  opts: Optional[InvokeOptions] = None) -> GetModelResult
    def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
                  opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]
    func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
    func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput

    > Note: This function is named GetModel in the Go SDK.

    public static class GetModel 
    {
        public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
        public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
    // Output-based functions aren't available in Java yet
    
    fn::invoke:
      function: oci:AiVision/getModel:getModel
      arguments:
        # arguments dictionary

    The following arguments are supported:

    ModelId string

    unique Model identifier

    ModelId string

    unique Model identifier

    modelId String

    unique Model identifier

    modelId string

    unique Model identifier

    model_id str

    unique Model identifier

    modelId String

    unique Model identifier

    getModel Result

    The following output properties are available:

    AveragePrecision double

    Average precision of the trained model

    CompartmentId string

    Compartment Identifier

    ConfidenceThreshold double

    Confidence ratio of the calculation

    DefinedTags Dictionary<string, object>

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    A short description of the model.

    DisplayName string

    Model Identifier, can be renamed

    FreeformTags Dictionary<string, object>

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    Id string

    Unique identifier that is immutable on creation

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    MaxTrainingDurationInHours double

    The maximum duration in hours for which the training will run.

    Metrics string

    Complete Training Metrics for successful trained model

    ModelId string
    ModelType string

    Type of the Model.

    ModelVersion string

    The version of the model

    Precision double

    Precision of the trained model

    ProjectId string

    The OCID of the project to associate with the model.

    Recall double

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags Dictionary<string, object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TestingDatasets List<GetModelTestingDataset>

    The base entity for a Dataset, which is the input for Model creation.

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours double

    Total hours actually used for training

    TrainingDatasets List<GetModelTrainingDataset>

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDatasets List<GetModelValidationDataset>

    The base entity for a Dataset, which is the input for Model creation.

    AveragePrecision float64

    Average precision of the trained model

    CompartmentId string

    Compartment Identifier

    ConfidenceThreshold float64

    Confidence ratio of the calculation

    DefinedTags map[string]interface{}

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    A short description of the model.

    DisplayName string

    Model Identifier, can be renamed

    FreeformTags map[string]interface{}

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    Id string

    Unique identifier that is immutable on creation

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    MaxTrainingDurationInHours float64

    The maximum duration in hours for which the training will run.

    Metrics string

    Complete Training Metrics for successful trained model

    ModelId string
    ModelType string

    Type of the Model.

    ModelVersion string

    The version of the model

    Precision float64

    Precision of the trained model

    ProjectId string

    The OCID of the project to associate with the model.

    Recall float64

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags map[string]interface{}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TestingDatasets []GetModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours float64

    Total hours actually used for training

    TrainingDatasets []GetModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDatasets []GetModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision Double

    Average precision of the trained model

    compartmentId String

    Compartment Identifier

    confidenceThreshold Double

    Confidence ratio of the calculation

    definedTags Map<String,Object>

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    A short description of the model.

    displayName String

    Model Identifier, can be renamed

    freeformTags Map<String,Object>

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    id String

    Unique identifier that is immutable on creation

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours Double

    The maximum duration in hours for which the training will run.

    metrics String

    Complete Training Metrics for successful trained model

    modelId String
    modelType String

    Type of the Model.

    modelVersion String

    The version of the model

    precision Double

    Precision of the trained model

    projectId String

    The OCID of the project to associate with the model.

    recall Double

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<String,Object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Integer

    Total number of testing Images

    testingDatasets List<GetModelTestingDataset>

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Integer

    Total number of training Images

    trainedDurationInHours Double

    Total hours actually used for training

    trainingDatasets List<GetModelTrainingDataset>

    The base entity for a Dataset, which is the input for Model creation.

    validationDatasets List<GetModelValidationDataset>

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision number

    Average precision of the trained model

    compartmentId string

    Compartment Identifier

    confidenceThreshold number

    Confidence ratio of the calculation

    definedTags {[key: string]: any}

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description string

    A short description of the model.

    displayName string

    Model Identifier, can be renamed

    freeformTags {[key: string]: any}

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    id string

    Unique identifier that is immutable on creation

    isQuickMode boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours number

    The maximum duration in hours for which the training will run.

    metrics string

    Complete Training Metrics for successful trained model

    modelId string
    modelType string

    Type of the Model.

    modelVersion string

    The version of the model

    precision number

    Precision of the trained model

    projectId string

    The OCID of the project to associate with the model.

    recall number

    Recall of the trained model

    state string

    The current state of the Model.

    systemTags {[key: string]: any}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount number

    Total number of testing Images

    testingDatasets GetModelTestingDataset[]

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount number

    Total number of training Images

    trainedDurationInHours number

    Total hours actually used for training

    trainingDatasets GetModelTrainingDataset[]

    The base entity for a Dataset, which is the input for Model creation.

    validationDatasets GetModelValidationDataset[]

    The base entity for a Dataset, which is the input for Model creation.

    average_precision float

    Average precision of the trained model

    compartment_id str

    Compartment Identifier

    confidence_threshold float

    Confidence ratio of the calculation

    defined_tags Mapping[str, Any]

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description str

    A short description of the model.

    display_name str

    Model Identifier, can be renamed

    freeform_tags Mapping[str, Any]

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    id str

    Unique identifier that is immutable on creation

    is_quick_mode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycle_details str

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    max_training_duration_in_hours float

    The maximum duration in hours for which the training will run.

    metrics str

    Complete Training Metrics for successful trained model

    model_id str
    model_type str

    Type of the Model.

    model_version str

    The version of the model

    precision float

    Precision of the trained model

    project_id str

    The OCID of the project to associate with the model.

    recall float

    Recall of the trained model

    state str

    The current state of the Model.

    system_tags Mapping[str, Any]

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    test_image_count int

    Total number of testing Images

    testing_datasets GetModelTestingDataset]

    The base entity for a Dataset, which is the input for Model creation.

    time_created str

    The time the Model was created. An RFC3339 formatted datetime string

    time_updated str

    The time the Model was updated. An RFC3339 formatted datetime string

    total_image_count int

    Total number of training Images

    trained_duration_in_hours float

    Total hours actually used for training

    training_datasets GetModelTrainingDataset]

    The base entity for a Dataset, which is the input for Model creation.

    validation_datasets GetModelValidationDataset]

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision Number

    Average precision of the trained model

    compartmentId String

    Compartment Identifier

    confidenceThreshold Number

    Confidence ratio of the calculation

    definedTags Map<Any>

    Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    A short description of the model.

    displayName String

    Model Identifier, can be renamed

    freeformTags Map<Any>

    Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    id String

    Unique identifier that is immutable on creation

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours Number

    The maximum duration in hours for which the training will run.

    metrics String

    Complete Training Metrics for successful trained model

    modelId String
    modelType String

    Type of the Model.

    modelVersion String

    The version of the model

    precision Number

    Precision of the trained model

    projectId String

    The OCID of the project to associate with the model.

    recall Number

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<Any>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Number

    Total number of testing Images

    testingDatasets List<Property Map>

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Number

    Total number of training Images

    trainedDurationInHours Number

    Total hours actually used for training

    trainingDatasets List<Property Map>

    The base entity for a Dataset, which is the input for Model creation.

    validationDatasets List<Property Map>

    The base entity for a Dataset, which is the input for Model creation.

    Supporting Types

    GetModelTestingDataset

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    datasetType string

    Type of the Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    dataset_type str

    Type of the Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    GetModelTrainingDataset

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    datasetType string

    Type of the Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    dataset_type str

    Type of the Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    GetModelValidationDataset

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    DatasetType string

    Type of the Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    datasetType string

    Type of the Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    dataset_type str

    Type of the Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    datasetType String

    Type of the Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    Package Details

    Repository
    oci pulumi/pulumi-oci
    License
    Apache-2.0
    Notes

    This Pulumi package is based on the oci Terraform Provider.

    oci logo
    Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi