oci.AiVision.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.
Gets a Model by identifier
Example Usage
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = Oci.AiVision.GetModel.Invoke(new()
{
ModelId = oci_ai_vision_model.Test_model.Id,
});
});
package main
import (
"github.com/pulumi/pulumi-oci/sdk/go/oci/AiVision"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiVision.GetModel(ctx, &aivision.GetModelArgs{
ModelId: oci_ai_vision_model.Test_model.Id,
}, nil)
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
.modelId(oci_ai_vision_model.test_model().id())
.build());
}
}
import pulumi
import pulumi_oci as oci
test_model = oci.AiVision.get_model(model_id=oci_ai_vision_model["test_model"]["id"])
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiVision.getModel({
modelId: oci_ai_vision_model.test_model.id,
});
variables:
testModel:
fn::invoke:
Function: oci:AiVision:getModel
Arguments:
modelId: ${oci_ai_vision_model.test_model.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>
def get_model(model_id: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]
func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput
> Note: This function is named GetModel
in the Go SDK.
public static class GetModel
{
public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: oci:AiVision/getModel:getModel
arguments:
# arguments dictionary
The following arguments are supported:
- Model
Id string unique Model identifier
- Model
Id string unique Model identifier
- model
Id String unique Model identifier
- model
Id string unique Model identifier
- model_
id str unique Model identifier
- model
Id String unique Model identifier
getModel Result
The following output properties are available:
- Average
Precision double Average precision of the trained model
- Compartment
Id string Compartment Identifier
- Confidence
Threshold double Confidence ratio of the calculation
- Dictionary<string, object>
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
A short description of the model.
- Display
Name string Model Identifier, can be renamed
- Dictionary<string, object>
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
Unique identifier that is immutable on creation
- Is
Quick boolMode If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training doubleDuration In Hours The maximum duration in hours for which the training will run.
- Metrics string
Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string Type of the Model.
- Model
Version string The version of the model
- Precision double
Precision of the trained model
- Project
Id string The OCID of the project to associate with the model.
- Recall double
Recall of the trained model
- State string
The current state of the Model.
- Dictionary<string, object>
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount Total number of testing Images
- Testing
Datasets List<GetModel Testing Dataset> The base entity for a Dataset, which is the input for Model creation.
- Time
Created string The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount Total number of training Images
- Trained
Duration doubleIn Hours Total hours actually used for training
- Training
Datasets List<GetModel Training Dataset> The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets List<GetModel Validation Dataset> The base entity for a Dataset, which is the input for Model creation.
- Average
Precision float64 Average precision of the trained model
- Compartment
Id string Compartment Identifier
- Confidence
Threshold float64 Confidence ratio of the calculation
- map[string]interface{}
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
A short description of the model.
- Display
Name string Model Identifier, can be renamed
- map[string]interface{}
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
Unique identifier that is immutable on creation
- Is
Quick boolMode If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training float64Duration In Hours The maximum duration in hours for which the training will run.
- Metrics string
Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string Type of the Model.
- Model
Version string The version of the model
- Precision float64
Precision of the trained model
- Project
Id string The OCID of the project to associate with the model.
- Recall float64
Recall of the trained model
- State string
The current state of the Model.
- map[string]interface{}
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount Total number of testing Images
- Testing
Datasets []GetModel Testing Dataset The base entity for a Dataset, which is the input for Model creation.
- Time
Created string The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount Total number of training Images
- Trained
Duration float64In Hours Total hours actually used for training
- Training
Datasets []GetModel Training Dataset The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets []GetModel Validation Dataset The base entity for a Dataset, which is the input for Model creation.
- average
Precision Double Average precision of the trained model
- compartment
Id String Compartment Identifier
- confidence
Threshold Double Confidence ratio of the calculation
- Map<String,Object>
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
A short description of the model.
- display
Name String Model Identifier, can be renamed
- Map<String,Object>
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
Unique identifier that is immutable on creation
- is
Quick BooleanMode If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training DoubleDuration In Hours The maximum duration in hours for which the training will run.
- metrics String
Complete Training Metrics for successful trained model
- model
Id String - model
Type String Type of the Model.
- model
Version String The version of the model
- precision Double
Precision of the trained model
- project
Id String The OCID of the project to associate with the model.
- recall Double
Recall of the trained model
- state String
The current state of the Model.
- Map<String,Object>
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image IntegerCount Total number of testing Images
- testing
Datasets List<GetModel Testing Dataset> The base entity for a Dataset, which is the input for Model creation.
- time
Created String The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String The time the Model was updated. An RFC3339 formatted datetime string
- total
Image IntegerCount Total number of training Images
- trained
Duration DoubleIn Hours Total hours actually used for training
- training
Datasets List<GetModel Training Dataset> The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<GetModel Validation Dataset> The base entity for a Dataset, which is the input for Model creation.
- average
Precision number Average precision of the trained model
- compartment
Id string Compartment Identifier
- confidence
Threshold number Confidence ratio of the calculation
- {[key: string]: any}
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
A short description of the model.
- display
Name string Model Identifier, can be renamed
- {[key: string]: any}
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id string
Unique identifier that is immutable on creation
- is
Quick booleanMode If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details string A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training numberDuration In Hours The maximum duration in hours for which the training will run.
- metrics string
Complete Training Metrics for successful trained model
- model
Id string - model
Type string Type of the Model.
- model
Version string The version of the model
- precision number
Precision of the trained model
- project
Id string The OCID of the project to associate with the model.
- recall number
Recall of the trained model
- state string
The current state of the Model.
- {[key: string]: any}
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image numberCount Total number of testing Images
- testing
Datasets GetModel Testing Dataset[] The base entity for a Dataset, which is the input for Model creation.
- time
Created string The time the Model was created. An RFC3339 formatted datetime string
- time
Updated string The time the Model was updated. An RFC3339 formatted datetime string
- total
Image numberCount Total number of training Images
- trained
Duration numberIn Hours Total hours actually used for training
- training
Datasets GetModel Training Dataset[] The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets GetModel Validation Dataset[] The base entity for a Dataset, which is the input for Model creation.
- average_
precision float Average precision of the trained model
- compartment_
id str Compartment Identifier
- confidence_
threshold float Confidence ratio of the calculation
- Mapping[str, Any]
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
A short description of the model.
- display_
name str Model Identifier, can be renamed
- Mapping[str, Any]
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id str
Unique identifier that is immutable on creation
- is_
quick_ boolmode If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_
details str A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_
training_ floatduration_ in_ hours The maximum duration in hours for which the training will run.
- metrics str
Complete Training Metrics for successful trained model
- model_
id str - model_
type str Type of the Model.
- model_
version str The version of the model
- precision float
Precision of the trained model
- project_
id str The OCID of the project to associate with the model.
- recall float
Recall of the trained model
- state str
The current state of the Model.
- Mapping[str, Any]
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test_
image_ intcount Total number of testing Images
- testing_
datasets GetModel Testing Dataset] The base entity for a Dataset, which is the input for Model creation.
- time_
created str The time the Model was created. An RFC3339 formatted datetime string
- time_
updated str The time the Model was updated. An RFC3339 formatted datetime string
- total_
image_ intcount Total number of training Images
- trained_
duration_ floatin_ hours Total hours actually used for training
- training_
datasets GetModel Training Dataset] The base entity for a Dataset, which is the input for Model creation.
- validation_
datasets GetModel Validation Dataset] The base entity for a Dataset, which is the input for Model creation.
- average
Precision Number Average precision of the trained model
- compartment
Id String Compartment Identifier
- confidence
Threshold Number Confidence ratio of the calculation
- Map<Any>
Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
A short description of the model.
- display
Name String Model Identifier, can be renamed
- Map<Any>
Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
Unique identifier that is immutable on creation
- is
Quick BooleanMode If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training NumberDuration In Hours The maximum duration in hours for which the training will run.
- metrics String
Complete Training Metrics for successful trained model
- model
Id String - model
Type String Type of the Model.
- model
Version String The version of the model
- precision Number
Precision of the trained model
- project
Id String The OCID of the project to associate with the model.
- recall Number
Recall of the trained model
- state String
The current state of the Model.
- Map<Any>
Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image NumberCount Total number of testing Images
- testing
Datasets List<Property Map> The base entity for a Dataset, which is the input for Model creation.
- time
Created String The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String The time the Model was updated. An RFC3339 formatted datetime string
- total
Image NumberCount Total number of training Images
- trained
Duration NumberIn Hours Total hours actually used for training
- training
Datasets List<Property Map> The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<Property Map> The base entity for a Dataset, which is the input for Model creation.
Supporting Types
GetModelTestingDataset
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
- bucket string
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string The OCID of the Data Science Labeling Dataset.
- dataset
Type string Type of the Dataset.
- namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
The object name of the input data file.
- bucket str
The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str The OCID of the Data Science Labeling Dataset.
- dataset_
type str Type of the Dataset.
- namespace_
name str The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
GetModelTrainingDataset
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
- bucket string
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string The OCID of the Data Science Labeling Dataset.
- dataset
Type string Type of the Dataset.
- namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
The object name of the input data file.
- bucket str
The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str The OCID of the Data Science Labeling Dataset.
- dataset_
type str Type of the Dataset.
- namespace_
name str The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
GetModelValidationDataset
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- Bucket string
The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string The OCID of the Data Science Labeling Dataset.
- Dataset
Type string Type of the Dataset.
- Namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
- bucket string
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string The OCID of the Data Science Labeling Dataset.
- dataset
Type string Type of the Dataset.
- namespace
Name string The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
The object name of the input data file.
- bucket str
The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str The OCID of the Data Science Labeling Dataset.
- dataset_
type str Type of the Dataset.
- namespace_
name str The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
The object name of the input data file.
- bucket String
The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String The OCID of the Data Science Labeling Dataset.
- dataset
Type String Type of the Dataset.
- namespace
Name String The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
This Pulumi package is based on the
oci
Terraform Provider.