oci.AiVision.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Vision service.
Create a new model.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = new oci.aivision.Model("test_model", {
compartmentId: compartmentId,
modelType: modelModelType,
projectId: testProject.id,
trainingDataset: {
datasetType: modelTrainingDatasetDatasetType,
bucket: modelTrainingDatasetBucket,
datasetId: testDataset.id,
namespaceName: modelTrainingDatasetNamespace,
object: modelTrainingDatasetObject,
},
definedTags: modelDefinedTags,
description: modelDescription,
displayName: modelDisplayName,
freeformTags: modelFreeformTags,
isQuickMode: modelIsQuickMode,
maxTrainingDurationInHours: modelMaxTrainingDurationInHours,
modelVersion: modelModelVersion,
testingDataset: {
datasetType: modelTestingDatasetDatasetType,
bucket: modelTestingDatasetBucket,
datasetId: testDataset.id,
namespaceName: modelTestingDatasetNamespace,
object: modelTestingDatasetObject,
},
validationDataset: {
datasetType: modelValidationDatasetDatasetType,
bucket: modelValidationDatasetBucket,
datasetId: testDataset.id,
namespaceName: modelValidationDatasetNamespace,
object: modelValidationDatasetObject,
},
});
import pulumi
import pulumi_oci as oci
test_model = oci.aivision.Model("test_model",
compartment_id=compartment_id,
model_type=model_model_type,
project_id=test_project["id"],
training_dataset={
"dataset_type": model_training_dataset_dataset_type,
"bucket": model_training_dataset_bucket,
"dataset_id": test_dataset["id"],
"namespace_name": model_training_dataset_namespace,
"object": model_training_dataset_object,
},
defined_tags=model_defined_tags,
description=model_description,
display_name=model_display_name,
freeform_tags=model_freeform_tags,
is_quick_mode=model_is_quick_mode,
max_training_duration_in_hours=model_max_training_duration_in_hours,
model_version=model_model_version,
testing_dataset={
"dataset_type": model_testing_dataset_dataset_type,
"bucket": model_testing_dataset_bucket,
"dataset_id": test_dataset["id"],
"namespace_name": model_testing_dataset_namespace,
"object": model_testing_dataset_object,
},
validation_dataset={
"dataset_type": model_validation_dataset_dataset_type,
"bucket": model_validation_dataset_bucket,
"dataset_id": test_dataset["id"],
"namespace_name": model_validation_dataset_namespace,
"object": model_validation_dataset_object,
})
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v3/go/oci/aivision"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := aivision.NewModel(ctx, "test_model", &aivision.ModelArgs{
CompartmentId: pulumi.Any(compartmentId),
ModelType: pulumi.Any(modelModelType),
ProjectId: pulumi.Any(testProject.Id),
TrainingDataset: &aivision.ModelTrainingDatasetArgs{
DatasetType: pulumi.Any(modelTrainingDatasetDatasetType),
Bucket: pulumi.Any(modelTrainingDatasetBucket),
DatasetId: pulumi.Any(testDataset.Id),
NamespaceName: pulumi.Any(modelTrainingDatasetNamespace),
Object: pulumi.Any(modelTrainingDatasetObject),
},
DefinedTags: pulumi.Any(modelDefinedTags),
Description: pulumi.Any(modelDescription),
DisplayName: pulumi.Any(modelDisplayName),
FreeformTags: pulumi.Any(modelFreeformTags),
IsQuickMode: pulumi.Any(modelIsQuickMode),
MaxTrainingDurationInHours: pulumi.Any(modelMaxTrainingDurationInHours),
ModelVersion: pulumi.Any(modelModelVersion),
TestingDataset: &aivision.ModelTestingDatasetArgs{
DatasetType: pulumi.Any(modelTestingDatasetDatasetType),
Bucket: pulumi.Any(modelTestingDatasetBucket),
DatasetId: pulumi.Any(testDataset.Id),
NamespaceName: pulumi.Any(modelTestingDatasetNamespace),
Object: pulumi.Any(modelTestingDatasetObject),
},
ValidationDataset: &aivision.ModelValidationDatasetArgs{
DatasetType: pulumi.Any(modelValidationDatasetDatasetType),
Bucket: pulumi.Any(modelValidationDatasetBucket),
DatasetId: pulumi.Any(testDataset.Id),
NamespaceName: pulumi.Any(modelValidationDatasetNamespace),
Object: pulumi.Any(modelValidationDatasetObject),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = new Oci.AiVision.Model("test_model", new()
{
CompartmentId = compartmentId,
ModelType = modelModelType,
ProjectId = testProject.Id,
TrainingDataset = new Oci.AiVision.Inputs.ModelTrainingDatasetArgs
{
DatasetType = modelTrainingDatasetDatasetType,
Bucket = modelTrainingDatasetBucket,
DatasetId = testDataset.Id,
NamespaceName = modelTrainingDatasetNamespace,
Object = modelTrainingDatasetObject,
},
DefinedTags = modelDefinedTags,
Description = modelDescription,
DisplayName = modelDisplayName,
FreeformTags = modelFreeformTags,
IsQuickMode = modelIsQuickMode,
MaxTrainingDurationInHours = modelMaxTrainingDurationInHours,
ModelVersion = modelModelVersion,
TestingDataset = new Oci.AiVision.Inputs.ModelTestingDatasetArgs
{
DatasetType = modelTestingDatasetDatasetType,
Bucket = modelTestingDatasetBucket,
DatasetId = testDataset.Id,
NamespaceName = modelTestingDatasetNamespace,
Object = modelTestingDatasetObject,
},
ValidationDataset = new Oci.AiVision.Inputs.ModelValidationDatasetArgs
{
DatasetType = modelValidationDatasetDatasetType,
Bucket = modelValidationDatasetBucket,
DatasetId = testDataset.Id,
NamespaceName = modelValidationDatasetNamespace,
Object = modelValidationDatasetObject,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.Model;
import com.pulumi.oci.AiVision.ModelArgs;
import com.pulumi.oci.AiVision.inputs.ModelTrainingDatasetArgs;
import com.pulumi.oci.AiVision.inputs.ModelTestingDatasetArgs;
import com.pulumi.oci.AiVision.inputs.ModelValidationDatasetArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var testModel = new Model("testModel", ModelArgs.builder()
.compartmentId(compartmentId)
.modelType(modelModelType)
.projectId(testProject.id())
.trainingDataset(ModelTrainingDatasetArgs.builder()
.datasetType(modelTrainingDatasetDatasetType)
.bucket(modelTrainingDatasetBucket)
.datasetId(testDataset.id())
.namespaceName(modelTrainingDatasetNamespace)
.object(modelTrainingDatasetObject)
.build())
.definedTags(modelDefinedTags)
.description(modelDescription)
.displayName(modelDisplayName)
.freeformTags(modelFreeformTags)
.isQuickMode(modelIsQuickMode)
.maxTrainingDurationInHours(modelMaxTrainingDurationInHours)
.modelVersion(modelModelVersion)
.testingDataset(ModelTestingDatasetArgs.builder()
.datasetType(modelTestingDatasetDatasetType)
.bucket(modelTestingDatasetBucket)
.datasetId(testDataset.id())
.namespaceName(modelTestingDatasetNamespace)
.object(modelTestingDatasetObject)
.build())
.validationDataset(ModelValidationDatasetArgs.builder()
.datasetType(modelValidationDatasetDatasetType)
.bucket(modelValidationDatasetBucket)
.datasetId(testDataset.id())
.namespaceName(modelValidationDatasetNamespace)
.object(modelValidationDatasetObject)
.build())
.build());
}
}
resources:
testModel:
type: oci:AiVision:Model
name: test_model
properties:
compartmentId: ${compartmentId}
modelType: ${modelModelType}
projectId: ${testProject.id}
trainingDataset:
datasetType: ${modelTrainingDatasetDatasetType}
bucket: ${modelTrainingDatasetBucket}
datasetId: ${testDataset.id}
namespaceName: ${modelTrainingDatasetNamespace}
object: ${modelTrainingDatasetObject}
definedTags: ${modelDefinedTags}
description: ${modelDescription}
displayName: ${modelDisplayName}
freeformTags: ${modelFreeformTags}
isQuickMode: ${modelIsQuickMode}
maxTrainingDurationInHours: ${modelMaxTrainingDurationInHours}
modelVersion: ${modelModelVersion}
testingDataset:
datasetType: ${modelTestingDatasetDatasetType}
bucket: ${modelTestingDatasetBucket}
datasetId: ${testDataset.id}
namespaceName: ${modelTestingDatasetNamespace}
object: ${modelTestingDatasetObject}
validationDataset:
datasetType: ${modelValidationDatasetDatasetType}
bucket: ${modelValidationDatasetBucket}
datasetId: ${testDataset.id}
namespaceName: ${modelValidationDatasetNamespace}
object: ${modelValidationDatasetObject}
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);
@overload
def Model(resource_name: str,
args: ModelArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
opts: Optional[ResourceOptions] = None,
model_type: Optional[str] = None,
training_dataset: Optional[ModelTrainingDatasetArgs] = None,
project_id: Optional[str] = None,
compartment_id: Optional[str] = None,
display_name: Optional[str] = None,
is_quick_mode: Optional[bool] = None,
max_training_duration_in_hours: Optional[float] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
model_version: Optional[str] = None,
description: Optional[str] = None,
testing_dataset: Optional[ModelTestingDatasetArgs] = None,
defined_tags: Optional[Mapping[str, str]] = None,
validation_dataset: Optional[ModelValidationDatasetArgs] = None)
func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)
public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)
type: oci:AiVision:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplemodelResourceResourceFromAiVisionmodel = new Oci.AiVision.Model("examplemodelResourceResourceFromAiVisionmodel", new()
{
ModelType = "string",
TrainingDataset = new Oci.AiVision.Inputs.ModelTrainingDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
NamespaceName = "string",
Object = "string",
},
ProjectId = "string",
CompartmentId = "string",
DisplayName = "string",
IsQuickMode = false,
MaxTrainingDurationInHours = 0,
FreeformTags =
{
{ "string", "string" },
},
ModelVersion = "string",
Description = "string",
TestingDataset = new Oci.AiVision.Inputs.ModelTestingDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
NamespaceName = "string",
Object = "string",
},
DefinedTags =
{
{ "string", "string" },
},
ValidationDataset = new Oci.AiVision.Inputs.ModelValidationDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
NamespaceName = "string",
Object = "string",
},
});
example, err := aivision.NewModel(ctx, "examplemodelResourceResourceFromAiVisionmodel", &aivision.ModelArgs{
ModelType: pulumi.String("string"),
TrainingDataset: &aivision.ModelTrainingDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
NamespaceName: pulumi.String("string"),
Object: pulumi.String("string"),
},
ProjectId: pulumi.String("string"),
CompartmentId: pulumi.String("string"),
DisplayName: pulumi.String("string"),
IsQuickMode: pulumi.Bool(false),
MaxTrainingDurationInHours: pulumi.Float64(0),
FreeformTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
ModelVersion: pulumi.String("string"),
Description: pulumi.String("string"),
TestingDataset: &aivision.ModelTestingDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
NamespaceName: pulumi.String("string"),
Object: pulumi.String("string"),
},
DefinedTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
ValidationDataset: &aivision.ModelValidationDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
NamespaceName: pulumi.String("string"),
Object: pulumi.String("string"),
},
})
var examplemodelResourceResourceFromAiVisionmodel = new com.pulumi.oci.AiVision.Model("examplemodelResourceResourceFromAiVisionmodel", com.pulumi.oci.AiVision.ModelArgs.builder()
.modelType("string")
.trainingDataset(ModelTrainingDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespaceName("string")
.object("string")
.build())
.projectId("string")
.compartmentId("string")
.displayName("string")
.isQuickMode(false)
.maxTrainingDurationInHours(0.0)
.freeformTags(Map.of("string", "string"))
.modelVersion("string")
.description("string")
.testingDataset(ModelTestingDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespaceName("string")
.object("string")
.build())
.definedTags(Map.of("string", "string"))
.validationDataset(ModelValidationDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespaceName("string")
.object("string")
.build())
.build());
examplemodel_resource_resource_from_ai_visionmodel = oci.aivision.Model("examplemodelResourceResourceFromAiVisionmodel",
model_type="string",
training_dataset={
"dataset_type": "string",
"bucket": "string",
"dataset_id": "string",
"namespace_name": "string",
"object": "string",
},
project_id="string",
compartment_id="string",
display_name="string",
is_quick_mode=False,
max_training_duration_in_hours=0,
freeform_tags={
"string": "string",
},
model_version="string",
description="string",
testing_dataset={
"dataset_type": "string",
"bucket": "string",
"dataset_id": "string",
"namespace_name": "string",
"object": "string",
},
defined_tags={
"string": "string",
},
validation_dataset={
"dataset_type": "string",
"bucket": "string",
"dataset_id": "string",
"namespace_name": "string",
"object": "string",
})
const examplemodelResourceResourceFromAiVisionmodel = new oci.aivision.Model("examplemodelResourceResourceFromAiVisionmodel", {
modelType: "string",
trainingDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespaceName: "string",
object: "string",
},
projectId: "string",
compartmentId: "string",
displayName: "string",
isQuickMode: false,
maxTrainingDurationInHours: 0,
freeformTags: {
string: "string",
},
modelVersion: "string",
description: "string",
testingDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespaceName: "string",
object: "string",
},
definedTags: {
string: "string",
},
validationDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespaceName: "string",
object: "string",
},
});
type: oci:AiVision:Model
properties:
compartmentId: string
definedTags:
string: string
description: string
displayName: string
freeformTags:
string: string
isQuickMode: false
maxTrainingDurationInHours: 0
modelType: string
modelVersion: string
projectId: string
testingDataset:
bucket: string
datasetId: string
datasetType: string
namespaceName: string
object: string
trainingDataset:
bucket: string
datasetId: string
datasetType: string
namespaceName: string
object: string
validationDataset:
bucket: string
datasetId: string
datasetType: string
namespaceName: string
object: string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Model resource accepts the following input properties:
- Compartment
Id string - (Updatable) The compartment identifier.
- Model
Type string - Which type of Vision model this is.
- Project
Id string - The OCID of the project that contains the model.
- Training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Max
Training doubleDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- Model
Version string - The model version
- Testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- Compartment
Id string - (Updatable) The compartment identifier.
- Model
Type string - Which type of Vision model this is.
- Project
Id string - The OCID of the project that contains the model.
- Training
Dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Max
Training float64Duration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- Model
Version string - The model version
- Testing
Dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- model
Type String - Which type of Vision model this is.
- project
Id String - The OCID of the project that contains the model.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training DoubleDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- model
Version String - The model version
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment
Id string - (Updatable) The compartment identifier.
- model
Type string - Which type of Vision model this is.
- project
Id string - The OCID of the project that contains the model.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick booleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training numberDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- model
Version string - The model version
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment_
id str - (Updatable) The compartment identifier.
- model_
type str - Which type of Vision model this is.
- project_
id str - The OCID of the project that contains the model.
- training_
dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_
name str - (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is_
quick_ boolmode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max_
training_ floatduration_ in_ hours - The maximum model training duration in hours, expressed as a decimal fraction.
- model_
version str - The model version
- testing_
dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- validation_
dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- model
Type String - Which type of Vision model this is.
- project
Id String - The OCID of the project that contains the model.
- training
Dataset Property Map - The base entity which is the input for creating and training a model.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training NumberDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- model
Version String - The model version
- testing
Dataset Property Map - The base entity which is the input for creating and training a model.
- validation
Dataset Property Map - The base entity which is the input for creating and training a model.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- Average
Precision double - The mean average precision of the trained model.
- Confidence
Threshold double - The intersection over the union threshold used for calculating precision and recall.
- Id string
- The provider-assigned unique ID for this managed resource.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics string
- The complete set of per-label metrics for successfully trained models.
- Precision double
- The precision of the trained model.
- Recall double
- Recall of the trained model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Test
Image intCount - The number of images set aside for evaluating model performance metrics after training.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Total
Image intCount - The number of images in the dataset used to train, validate, and test the model.
- Trained
Duration doubleIn Hours - The total hours actually used for model training.
- Average
Precision float64 - The mean average precision of the trained model.
- Confidence
Threshold float64 - The intersection over the union threshold used for calculating precision and recall.
- Id string
- The provider-assigned unique ID for this managed resource.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics string
- The complete set of per-label metrics for successfully trained models.
- Precision float64
- The precision of the trained model.
- Recall float64
- Recall of the trained model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Test
Image intCount - The number of images set aside for evaluating model performance metrics after training.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Total
Image intCount - The number of images in the dataset used to train, validate, and test the model.
- Trained
Duration float64In Hours - The total hours actually used for model training.
- average
Precision Double - The mean average precision of the trained model.
- confidence
Threshold Double - The intersection over the union threshold used for calculating precision and recall.
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics String
- The complete set of per-label metrics for successfully trained models.
- precision Double
- The precision of the trained model.
- recall Double
- Recall of the trained model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image IntegerCount - The number of images set aside for evaluating model performance metrics after training.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- total
Image IntegerCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration DoubleIn Hours - The total hours actually used for model training.
- average
Precision number - The mean average precision of the trained model.
- confidence
Threshold number - The intersection over the union threshold used for calculating precision and recall.
- id string
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics string
- The complete set of per-label metrics for successfully trained models.
- precision number
- The precision of the trained model.
- recall number
- Recall of the trained model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image numberCount - The number of images set aside for evaluating model performance metrics after training.
- time
Created string - When the model was created, as an RFC3339 datetime string.
- time
Updated string - When the model was updated, as an RFC3339 datetime string.
- total
Image numberCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration numberIn Hours - The total hours actually used for model training.
- average_
precision float - The mean average precision of the trained model.
- confidence_
threshold float - The intersection over the union threshold used for calculating precision and recall.
- id str
- The provider-assigned unique ID for this managed resource.
- lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics str
- The complete set of per-label metrics for successfully trained models.
- precision float
- The precision of the trained model.
- recall float
- Recall of the trained model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test_
image_ intcount - The number of images set aside for evaluating model performance metrics after training.
- time_
created str - When the model was created, as an RFC3339 datetime string.
- time_
updated str - When the model was updated, as an RFC3339 datetime string.
- total_
image_ intcount - The number of images in the dataset used to train, validate, and test the model.
- trained_
duration_ floatin_ hours - The total hours actually used for model training.
- average
Precision Number - The mean average precision of the trained model.
- confidence
Threshold Number - The intersection over the union threshold used for calculating precision and recall.
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics String
- The complete set of per-label metrics for successfully trained models.
- precision Number
- The precision of the trained model.
- recall Number
- Recall of the trained model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image NumberCount - The number of images set aside for evaluating model performance metrics after training.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- total
Image NumberCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration NumberIn Hours - The total hours actually used for model training.
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
average_precision: Optional[float] = None,
compartment_id: Optional[str] = None,
confidence_threshold: Optional[float] = None,
defined_tags: Optional[Mapping[str, str]] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
is_quick_mode: Optional[bool] = None,
lifecycle_details: Optional[str] = None,
max_training_duration_in_hours: Optional[float] = None,
metrics: Optional[str] = None,
model_type: Optional[str] = None,
model_version: Optional[str] = None,
precision: Optional[float] = None,
project_id: Optional[str] = None,
recall: Optional[float] = None,
state: Optional[str] = None,
system_tags: Optional[Mapping[str, str]] = None,
test_image_count: Optional[int] = None,
testing_dataset: Optional[ModelTestingDatasetArgs] = None,
time_created: Optional[str] = None,
time_updated: Optional[str] = None,
total_image_count: Optional[int] = None,
trained_duration_in_hours: Optional[float] = None,
training_dataset: Optional[ModelTrainingDatasetArgs] = None,
validation_dataset: Optional[ModelValidationDatasetArgs] = None) -> Model
func GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)
public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)
public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)
resources: _: type: oci:AiVision:Model get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Average
Precision double - The mean average precision of the trained model.
- Compartment
Id string - (Updatable) The compartment identifier.
- Confidence
Threshold double - The intersection over the union threshold used for calculating precision and recall.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training doubleDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- Metrics string
- The complete set of per-label metrics for successfully trained models.
- Model
Type string - Which type of Vision model this is.
- Model
Version string - The model version
- Precision double
- The precision of the trained model.
- Project
Id string - The OCID of the project that contains the model.
- Recall double
- Recall of the trained model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Test
Image intCount - The number of images set aside for evaluating model performance metrics after training.
- Testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Total
Image intCount - The number of images in the dataset used to train, validate, and test the model.
- Trained
Duration doubleIn Hours - The total hours actually used for model training.
- Training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- Average
Precision float64 - The mean average precision of the trained model.
- Compartment
Id string - (Updatable) The compartment identifier.
- Confidence
Threshold float64 - The intersection over the union threshold used for calculating precision and recall.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training float64Duration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- Metrics string
- The complete set of per-label metrics for successfully trained models.
- Model
Type string - Which type of Vision model this is.
- Model
Version string - The model version
- Precision float64
- The precision of the trained model.
- Project
Id string - The OCID of the project that contains the model.
- Recall float64
- Recall of the trained model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Test
Image intCount - The number of images set aside for evaluating model performance metrics after training.
- Testing
Dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Total
Image intCount - The number of images in the dataset used to train, validate, and test the model.
- Trained
Duration float64In Hours - The total hours actually used for model training.
- Training
Dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- average
Precision Double - The mean average precision of the trained model.
- compartment
Id String - (Updatable) The compartment identifier.
- confidence
Threshold Double - The intersection over the union threshold used for calculating precision and recall.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training DoubleDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- metrics String
- The complete set of per-label metrics for successfully trained models.
- model
Type String - Which type of Vision model this is.
- model
Version String - The model version
- precision Double
- The precision of the trained model.
- project
Id String - The OCID of the project that contains the model.
- recall Double
- Recall of the trained model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image IntegerCount - The number of images set aside for evaluating model performance metrics after training.
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- total
Image IntegerCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration DoubleIn Hours - The total hours actually used for model training.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- average
Precision number - The mean average precision of the trained model.
- compartment
Id string - (Updatable) The compartment identifier.
- confidence
Threshold number - The intersection over the union threshold used for calculating precision and recall.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick booleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training numberDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- metrics string
- The complete set of per-label metrics for successfully trained models.
- model
Type string - Which type of Vision model this is.
- model
Version string - The model version
- precision number
- The precision of the trained model.
- project
Id string - The OCID of the project that contains the model.
- recall number
- Recall of the trained model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image numberCount - The number of images set aside for evaluating model performance metrics after training.
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- time
Created string - When the model was created, as an RFC3339 datetime string.
- time
Updated string - When the model was updated, as an RFC3339 datetime string.
- total
Image numberCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration numberIn Hours - The total hours actually used for model training.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- average_
precision float - The mean average precision of the trained model.
- compartment_
id str - (Updatable) The compartment identifier.
- confidence_
threshold float - The intersection over the union threshold used for calculating precision and recall.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_
name str - (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is_
quick_ boolmode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
- max_
training_ floatduration_ in_ hours - The maximum model training duration in hours, expressed as a decimal fraction.
- metrics str
- The complete set of per-label metrics for successfully trained models.
- model_
type str - Which type of Vision model this is.
- model_
version str - The model version
- precision float
- The precision of the trained model.
- project_
id str - The OCID of the project that contains the model.
- recall float
- Recall of the trained model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test_
image_ intcount - The number of images set aside for evaluating model performance metrics after training.
- testing_
dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- time_
created str - When the model was created, as an RFC3339 datetime string.
- time_
updated str - When the model was updated, as an RFC3339 datetime string.
- total_
image_ intcount - The number of images in the dataset used to train, validate, and test the model.
- trained_
duration_ floatin_ hours - The total hours actually used for model training.
- training_
dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- validation_
dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- average
Precision Number - The mean average precision of the trained model.
- compartment
Id String - (Updatable) The compartment identifier.
- confidence
Threshold Number - The intersection over the union threshold used for calculating precision and recall.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training NumberDuration In Hours - The maximum model training duration in hours, expressed as a decimal fraction.
- metrics String
- The complete set of per-label metrics for successfully trained models.
- model
Type String - Which type of Vision model this is.
- model
Version String - The model version
- precision Number
- The precision of the trained model.
- project
Id String - The OCID of the project that contains the model.
- recall Number
- Recall of the trained model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- test
Image NumberCount - The number of images set aside for evaluating model performance metrics after training.
- testing
Dataset Property Map - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- total
Image NumberCount - The number of images in the dataset used to train, validate, and test the model.
- trained
Duration NumberIn Hours - The total hours actually used for model training.
- training
Dataset Property Map - The base entity which is the input for creating and training a model.
- validation
Dataset Property Map - The base entity which is the input for creating and training a model.
Supporting Types
ModelTestingDataset, ModelTestingDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
- The object name of the input data file.
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace
Name string - object string
- The object name of the input data file.
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace_
name str - object str
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
- The object name of the input data file.
ModelTrainingDataset, ModelTrainingDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
- The object name of the input data file.
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace
Name string - object string
- The object name of the input data file.
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace_
name str - object str
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
- The object name of the input data file.
ModelValidationDataset, ModelValidationDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace
Name string - Object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace
Name string - object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace_
name str - object str
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace
Name String - object String
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
Import
Models can be imported using the id
, e.g.
$ pulumi import oci:AiVision/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.