1. Packages
  2. Oracle Cloud Infrastructure
  3. API Docs
  4. AiVision
  5. Model
Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi

oci.AiVision.Model

Explore with Pulumi AI

oci logo
Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi

    This resource provides the Model resource in Oracle Cloud Infrastructure Ai Vision service.

    Creates a new Model.

    Example Usage

    using System.Collections.Generic;
    using System.Linq;
    using Pulumi;
    using Oci = Pulumi.Oci;
    
    return await Deployment.RunAsync(() => 
    {
        var testModel = new Oci.AiVision.Model("testModel", new()
        {
            CompartmentId = @var.Compartment_id,
            ModelType = @var.Model_model_type,
            ProjectId = oci_ai_vision_project.Test_project.Id,
            TrainingDataset = new Oci.AiVision.Inputs.ModelTrainingDatasetArgs
            {
                DatasetType = @var.Model_training_dataset_dataset_type,
                Bucket = @var.Model_training_dataset_bucket,
                DatasetId = oci_data_labeling_service_dataset.Test_dataset.Id,
                NamespaceName = @var.Model_training_dataset_namespace,
                Object = @var.Model_training_dataset_object,
            },
            DefinedTags = 
            {
                { "foo-namespace.bar-key", "value" },
            },
            Description = @var.Model_description,
            DisplayName = @var.Model_display_name,
            FreeformTags = 
            {
                { "bar-key", "value" },
            },
            IsQuickMode = @var.Model_is_quick_mode,
            MaxTrainingDurationInHours = @var.Model_max_training_duration_in_hours,
            ModelVersion = @var.Model_model_version,
            TestingDataset = new Oci.AiVision.Inputs.ModelTestingDatasetArgs
            {
                DatasetType = @var.Model_testing_dataset_dataset_type,
                Bucket = @var.Model_testing_dataset_bucket,
                DatasetId = oci_data_labeling_service_dataset.Test_dataset.Id,
                NamespaceName = @var.Model_testing_dataset_namespace,
                Object = @var.Model_testing_dataset_object,
            },
            ValidationDataset = new Oci.AiVision.Inputs.ModelValidationDatasetArgs
            {
                DatasetType = @var.Model_validation_dataset_dataset_type,
                Bucket = @var.Model_validation_dataset_bucket,
                DatasetId = oci_data_labeling_service_dataset.Test_dataset.Id,
                NamespaceName = @var.Model_validation_dataset_namespace,
                Object = @var.Model_validation_dataset_object,
            },
        });
    
    });
    
    package main
    
    import (
    	"github.com/pulumi/pulumi-oci/sdk/go/oci/AiVision"
    	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
    )
    
    func main() {
    	pulumi.Run(func(ctx *pulumi.Context) error {
    		_, err := AiVision.NewModel(ctx, "testModel", &AiVision.ModelArgs{
    			CompartmentId: pulumi.Any(_var.Compartment_id),
    			ModelType:     pulumi.Any(_var.Model_model_type),
    			ProjectId:     pulumi.Any(oci_ai_vision_project.Test_project.Id),
    			TrainingDataset: &aivision.ModelTrainingDatasetArgs{
    				DatasetType:   pulumi.Any(_var.Model_training_dataset_dataset_type),
    				Bucket:        pulumi.Any(_var.Model_training_dataset_bucket),
    				DatasetId:     pulumi.Any(oci_data_labeling_service_dataset.Test_dataset.Id),
    				NamespaceName: pulumi.Any(_var.Model_training_dataset_namespace),
    				Object:        pulumi.Any(_var.Model_training_dataset_object),
    			},
    			DefinedTags: pulumi.AnyMap{
    				"foo-namespace.bar-key": pulumi.Any("value"),
    			},
    			Description: pulumi.Any(_var.Model_description),
    			DisplayName: pulumi.Any(_var.Model_display_name),
    			FreeformTags: pulumi.AnyMap{
    				"bar-key": pulumi.Any("value"),
    			},
    			IsQuickMode:                pulumi.Any(_var.Model_is_quick_mode),
    			MaxTrainingDurationInHours: pulumi.Any(_var.Model_max_training_duration_in_hours),
    			ModelVersion:               pulumi.Any(_var.Model_model_version),
    			TestingDataset: &aivision.ModelTestingDatasetArgs{
    				DatasetType:   pulumi.Any(_var.Model_testing_dataset_dataset_type),
    				Bucket:        pulumi.Any(_var.Model_testing_dataset_bucket),
    				DatasetId:     pulumi.Any(oci_data_labeling_service_dataset.Test_dataset.Id),
    				NamespaceName: pulumi.Any(_var.Model_testing_dataset_namespace),
    				Object:        pulumi.Any(_var.Model_testing_dataset_object),
    			},
    			ValidationDataset: &aivision.ModelValidationDatasetArgs{
    				DatasetType:   pulumi.Any(_var.Model_validation_dataset_dataset_type),
    				Bucket:        pulumi.Any(_var.Model_validation_dataset_bucket),
    				DatasetId:     pulumi.Any(oci_data_labeling_service_dataset.Test_dataset.Id),
    				NamespaceName: pulumi.Any(_var.Model_validation_dataset_namespace),
    				Object:        pulumi.Any(_var.Model_validation_dataset_object),
    			},
    		})
    		if err != nil {
    			return err
    		}
    		return nil
    	})
    }
    
    package generated_program;
    
    import com.pulumi.Context;
    import com.pulumi.Pulumi;
    import com.pulumi.core.Output;
    import com.pulumi.oci.AiVision.Model;
    import com.pulumi.oci.AiVision.ModelArgs;
    import com.pulumi.oci.AiVision.inputs.ModelTrainingDatasetArgs;
    import com.pulumi.oci.AiVision.inputs.ModelTestingDatasetArgs;
    import com.pulumi.oci.AiVision.inputs.ModelValidationDatasetArgs;
    import java.util.List;
    import java.util.ArrayList;
    import java.util.Map;
    import java.io.File;
    import java.nio.file.Files;
    import java.nio.file.Paths;
    
    public class App {
        public static void main(String[] args) {
            Pulumi.run(App::stack);
        }
    
        public static void stack(Context ctx) {
            var testModel = new Model("testModel", ModelArgs.builder()        
                .compartmentId(var_.compartment_id())
                .modelType(var_.model_model_type())
                .projectId(oci_ai_vision_project.test_project().id())
                .trainingDataset(ModelTrainingDatasetArgs.builder()
                    .datasetType(var_.model_training_dataset_dataset_type())
                    .bucket(var_.model_training_dataset_bucket())
                    .datasetId(oci_data_labeling_service_dataset.test_dataset().id())
                    .namespaceName(var_.model_training_dataset_namespace())
                    .object(var_.model_training_dataset_object())
                    .build())
                .definedTags(Map.of("foo-namespace.bar-key", "value"))
                .description(var_.model_description())
                .displayName(var_.model_display_name())
                .freeformTags(Map.of("bar-key", "value"))
                .isQuickMode(var_.model_is_quick_mode())
                .maxTrainingDurationInHours(var_.model_max_training_duration_in_hours())
                .modelVersion(var_.model_model_version())
                .testingDataset(ModelTestingDatasetArgs.builder()
                    .datasetType(var_.model_testing_dataset_dataset_type())
                    .bucket(var_.model_testing_dataset_bucket())
                    .datasetId(oci_data_labeling_service_dataset.test_dataset().id())
                    .namespaceName(var_.model_testing_dataset_namespace())
                    .object(var_.model_testing_dataset_object())
                    .build())
                .validationDataset(ModelValidationDatasetArgs.builder()
                    .datasetType(var_.model_validation_dataset_dataset_type())
                    .bucket(var_.model_validation_dataset_bucket())
                    .datasetId(oci_data_labeling_service_dataset.test_dataset().id())
                    .namespaceName(var_.model_validation_dataset_namespace())
                    .object(var_.model_validation_dataset_object())
                    .build())
                .build());
    
        }
    }
    
    import pulumi
    import pulumi_oci as oci
    
    test_model = oci.ai_vision.Model("testModel",
        compartment_id=var["compartment_id"],
        model_type=var["model_model_type"],
        project_id=oci_ai_vision_project["test_project"]["id"],
        training_dataset=oci.ai_vision.ModelTrainingDatasetArgs(
            dataset_type=var["model_training_dataset_dataset_type"],
            bucket=var["model_training_dataset_bucket"],
            dataset_id=oci_data_labeling_service_dataset["test_dataset"]["id"],
            namespace_name=var["model_training_dataset_namespace"],
            object=var["model_training_dataset_object"],
        ),
        defined_tags={
            "foo-namespace.bar-key": "value",
        },
        description=var["model_description"],
        display_name=var["model_display_name"],
        freeform_tags={
            "bar-key": "value",
        },
        is_quick_mode=var["model_is_quick_mode"],
        max_training_duration_in_hours=var["model_max_training_duration_in_hours"],
        model_version=var["model_model_version"],
        testing_dataset=oci.ai_vision.ModelTestingDatasetArgs(
            dataset_type=var["model_testing_dataset_dataset_type"],
            bucket=var["model_testing_dataset_bucket"],
            dataset_id=oci_data_labeling_service_dataset["test_dataset"]["id"],
            namespace_name=var["model_testing_dataset_namespace"],
            object=var["model_testing_dataset_object"],
        ),
        validation_dataset=oci.ai_vision.ModelValidationDatasetArgs(
            dataset_type=var["model_validation_dataset_dataset_type"],
            bucket=var["model_validation_dataset_bucket"],
            dataset_id=oci_data_labeling_service_dataset["test_dataset"]["id"],
            namespace_name=var["model_validation_dataset_namespace"],
            object=var["model_validation_dataset_object"],
        ))
    
    import * as pulumi from "@pulumi/pulumi";
    import * as oci from "@pulumi/oci";
    
    const testModel = new oci.aivision.Model("testModel", {
        compartmentId: _var.compartment_id,
        modelType: _var.model_model_type,
        projectId: oci_ai_vision_project.test_project.id,
        trainingDataset: {
            datasetType: _var.model_training_dataset_dataset_type,
            bucket: _var.model_training_dataset_bucket,
            datasetId: oci_data_labeling_service_dataset.test_dataset.id,
            namespaceName: _var.model_training_dataset_namespace,
            object: _var.model_training_dataset_object,
        },
        definedTags: {
            "foo-namespace.bar-key": "value",
        },
        description: _var.model_description,
        displayName: _var.model_display_name,
        freeformTags: {
            "bar-key": "value",
        },
        isQuickMode: _var.model_is_quick_mode,
        maxTrainingDurationInHours: _var.model_max_training_duration_in_hours,
        modelVersion: _var.model_model_version,
        testingDataset: {
            datasetType: _var.model_testing_dataset_dataset_type,
            bucket: _var.model_testing_dataset_bucket,
            datasetId: oci_data_labeling_service_dataset.test_dataset.id,
            namespaceName: _var.model_testing_dataset_namespace,
            object: _var.model_testing_dataset_object,
        },
        validationDataset: {
            datasetType: _var.model_validation_dataset_dataset_type,
            bucket: _var.model_validation_dataset_bucket,
            datasetId: oci_data_labeling_service_dataset.test_dataset.id,
            namespaceName: _var.model_validation_dataset_namespace,
            object: _var.model_validation_dataset_object,
        },
    });
    
    resources:
      testModel:
        type: oci:AiVision:Model
        properties:
          #Required
          compartmentId: ${var.compartment_id}
          modelType: ${var.model_model_type}
          projectId: ${oci_ai_vision_project.test_project.id}
          trainingDataset:
            datasetType: ${var.model_training_dataset_dataset_type}
            bucket: ${var.model_training_dataset_bucket}
            datasetId: ${oci_data_labeling_service_dataset.test_dataset.id}
            namespaceName: ${var.model_training_dataset_namespace}
            object: ${var.model_training_dataset_object}
          #Optional
          definedTags:
            foo-namespace.bar-key: value
          description: ${var.model_description}
          displayName: ${var.model_display_name}
          freeformTags:
            bar-key: value
          isQuickMode: ${var.model_is_quick_mode}
          maxTrainingDurationInHours: ${var.model_max_training_duration_in_hours}
          modelVersion: ${var.model_model_version}
          testingDataset:
            datasetType: ${var.model_testing_dataset_dataset_type}
            bucket: ${var.model_testing_dataset_bucket}
            datasetId: ${oci_data_labeling_service_dataset.test_dataset.id}
            namespaceName: ${var.model_testing_dataset_namespace}
            object: ${var.model_testing_dataset_object}
          validationDataset:
            datasetType: ${var.model_validation_dataset_dataset_type}
            bucket: ${var.model_validation_dataset_bucket}
            datasetId: ${oci_data_labeling_service_dataset.test_dataset.id}
            namespaceName: ${var.model_validation_dataset_namespace}
            object: ${var.model_validation_dataset_object}
    

    Create Model Resource

    new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);
    @overload
    def Model(resource_name: str,
              opts: Optional[ResourceOptions] = None,
              compartment_id: Optional[str] = None,
              defined_tags: Optional[Mapping[str, Any]] = None,
              description: Optional[str] = None,
              display_name: Optional[str] = None,
              freeform_tags: Optional[Mapping[str, Any]] = None,
              is_quick_mode: Optional[bool] = None,
              max_training_duration_in_hours: Optional[float] = None,
              model_type: Optional[str] = None,
              model_version: Optional[str] = None,
              project_id: Optional[str] = None,
              testing_dataset: Optional[_aivision.ModelTestingDatasetArgs] = None,
              training_dataset: Optional[_aivision.ModelTrainingDatasetArgs] = None,
              validation_dataset: Optional[_aivision.ModelValidationDatasetArgs] = None)
    @overload
    def Model(resource_name: str,
              args: ModelArgs,
              opts: Optional[ResourceOptions] = None)
    func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)
    public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)
    public Model(String name, ModelArgs args)
    public Model(String name, ModelArgs args, CustomResourceOptions options)
    
    type: oci:AiVision:Model
    properties: # The arguments to resource properties.
    options: # Bag of options to control resource's behavior.
    
    
    name string
    The unique name of the resource.
    args ModelArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    resource_name str
    The unique name of the resource.
    args ModelArgs
    The arguments to resource properties.
    opts ResourceOptions
    Bag of options to control resource's behavior.
    ctx Context
    Context object for the current deployment.
    name string
    The unique name of the resource.
    args ModelArgs
    The arguments to resource properties.
    opts ResourceOption
    Bag of options to control resource's behavior.
    name string
    The unique name of the resource.
    args ModelArgs
    The arguments to resource properties.
    opts CustomResourceOptions
    Bag of options to control resource's behavior.
    name String
    The unique name of the resource.
    args ModelArgs
    The arguments to resource properties.
    options CustomResourceOptions
    Bag of options to control resource's behavior.

    Model Resource Properties

    To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

    Inputs

    The Model resource accepts the following input properties:

    CompartmentId string

    (Updatable) Compartment Identifier

    ModelType string

    The type of the model.

    ProjectId string

    The OCID of the project to associate with the model.

    TrainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    DefinedTags Dictionary<string, object>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    (Updatable) A short description of the Model.

    DisplayName string

    (Updatable) Model Identifier

    FreeformTags Dictionary<string, object>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    MaxTrainingDurationInHours double

    The maximum duration in hours for which the training will run.

    ModelVersion string

    Model version.

    TestingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    CompartmentId string

    (Updatable) Compartment Identifier

    ModelType string

    The type of the model.

    ProjectId string

    The OCID of the project to associate with the model.

    TrainingDataset ModelTrainingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    DefinedTags map[string]interface{}

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    (Updatable) A short description of the Model.

    DisplayName string

    (Updatable) Model Identifier

    FreeformTags map[string]interface{}

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    MaxTrainingDurationInHours float64

    The maximum duration in hours for which the training will run.

    ModelVersion string

    Model version.

    TestingDataset ModelTestingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDataset ModelValidationDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    compartmentId String

    (Updatable) Compartment Identifier

    modelType String

    The type of the model.

    projectId String

    The OCID of the project to associate with the model.

    trainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    definedTags Map<String,Object>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    (Updatable) A short description of the Model.

    displayName String

    (Updatable) Model Identifier

    freeformTags Map<String,Object>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    maxTrainingDurationInHours Double

    The maximum duration in hours for which the training will run.

    modelVersion String

    Model version.

    testingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    compartmentId string

    (Updatable) Compartment Identifier

    modelType string

    The type of the model.

    projectId string

    The OCID of the project to associate with the model.

    trainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    definedTags {[key: string]: any}

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description string

    (Updatable) A short description of the Model.

    displayName string

    (Updatable) Model Identifier

    freeformTags {[key: string]: any}

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    maxTrainingDurationInHours number

    The maximum duration in hours for which the training will run.

    modelVersion string

    Model version.

    testingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    compartment_id str

    (Updatable) Compartment Identifier

    model_type str

    The type of the model.

    project_id str

    The OCID of the project to associate with the model.

    training_dataset ModelTrainingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    defined_tags Mapping[str, Any]

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description str

    (Updatable) A short description of the Model.

    display_name str

    (Updatable) Model Identifier

    freeform_tags Mapping[str, Any]

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    is_quick_mode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    max_training_duration_in_hours float

    The maximum duration in hours for which the training will run.

    model_version str

    Model version.

    testing_dataset ModelTestingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    validation_dataset ModelValidationDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    compartmentId String

    (Updatable) Compartment Identifier

    modelType String

    The type of the model.

    projectId String

    The OCID of the project to associate with the model.

    trainingDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    definedTags Map<Any>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    (Updatable) A short description of the Model.

    displayName String

    (Updatable) Model Identifier

    freeformTags Map<Any>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    maxTrainingDurationInHours Number

    The maximum duration in hours for which the training will run.

    modelVersion String

    Model version.

    testingDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    Outputs

    All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:

    AveragePrecision double

    Average precision of the trained model

    ConfidenceThreshold double

    Confidence ratio of the calculation

    Id string

    The provider-assigned unique ID for this managed resource.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    Metrics string

    Complete Training Metrics for successful trained model

    Precision double

    Precision of the trained model

    Recall double

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags Dictionary<string, object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours double

    Total hours actually used for training

    AveragePrecision float64

    Average precision of the trained model

    ConfidenceThreshold float64

    Confidence ratio of the calculation

    Id string

    The provider-assigned unique ID for this managed resource.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    Metrics string

    Complete Training Metrics for successful trained model

    Precision float64

    Precision of the trained model

    Recall float64

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags map[string]interface{}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours float64

    Total hours actually used for training

    averagePrecision Double

    Average precision of the trained model

    confidenceThreshold Double

    Confidence ratio of the calculation

    id String

    The provider-assigned unique ID for this managed resource.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    metrics String

    Complete Training Metrics for successful trained model

    precision Double

    Precision of the trained model

    recall Double

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<String,Object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Integer

    Total number of testing Images

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Integer

    Total number of training Images

    trainedDurationInHours Double

    Total hours actually used for training

    averagePrecision number

    Average precision of the trained model

    confidenceThreshold number

    Confidence ratio of the calculation

    id string

    The provider-assigned unique ID for this managed resource.

    lifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    metrics string

    Complete Training Metrics for successful trained model

    precision number

    Precision of the trained model

    recall number

    Recall of the trained model

    state string

    The current state of the Model.

    systemTags {[key: string]: any}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount number

    Total number of testing Images

    timeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount number

    Total number of training Images

    trainedDurationInHours number

    Total hours actually used for training

    average_precision float

    Average precision of the trained model

    confidence_threshold float

    Confidence ratio of the calculation

    id str

    The provider-assigned unique ID for this managed resource.

    lifecycle_details str

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    metrics str

    Complete Training Metrics for successful trained model

    precision float

    Precision of the trained model

    recall float

    Recall of the trained model

    state str

    The current state of the Model.

    system_tags Mapping[str, Any]

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    test_image_count int

    Total number of testing Images

    time_created str

    The time the Model was created. An RFC3339 formatted datetime string

    time_updated str

    The time the Model was updated. An RFC3339 formatted datetime string

    total_image_count int

    Total number of training Images

    trained_duration_in_hours float

    Total hours actually used for training

    averagePrecision Number

    Average precision of the trained model

    confidenceThreshold Number

    Confidence ratio of the calculation

    id String

    The provider-assigned unique ID for this managed resource.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    metrics String

    Complete Training Metrics for successful trained model

    precision Number

    Precision of the trained model

    recall Number

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<Any>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Number

    Total number of testing Images

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Number

    Total number of training Images

    trainedDurationInHours Number

    Total hours actually used for training

    Look up Existing Model Resource

    Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

    public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model
    @staticmethod
    def get(resource_name: str,
            id: str,
            opts: Optional[ResourceOptions] = None,
            average_precision: Optional[float] = None,
            compartment_id: Optional[str] = None,
            confidence_threshold: Optional[float] = None,
            defined_tags: Optional[Mapping[str, Any]] = None,
            description: Optional[str] = None,
            display_name: Optional[str] = None,
            freeform_tags: Optional[Mapping[str, Any]] = None,
            is_quick_mode: Optional[bool] = None,
            lifecycle_details: Optional[str] = None,
            max_training_duration_in_hours: Optional[float] = None,
            metrics: Optional[str] = None,
            model_type: Optional[str] = None,
            model_version: Optional[str] = None,
            precision: Optional[float] = None,
            project_id: Optional[str] = None,
            recall: Optional[float] = None,
            state: Optional[str] = None,
            system_tags: Optional[Mapping[str, Any]] = None,
            test_image_count: Optional[int] = None,
            testing_dataset: Optional[_aivision.ModelTestingDatasetArgs] = None,
            time_created: Optional[str] = None,
            time_updated: Optional[str] = None,
            total_image_count: Optional[int] = None,
            trained_duration_in_hours: Optional[float] = None,
            training_dataset: Optional[_aivision.ModelTrainingDatasetArgs] = None,
            validation_dataset: Optional[_aivision.ModelValidationDatasetArgs] = None) -> Model
    func GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)
    public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)
    public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)
    Resource lookup is not supported in YAML
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    resource_name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    name
    The unique name of the resulting resource.
    id
    The unique provider ID of the resource to lookup.
    state
    Any extra arguments used during the lookup.
    opts
    A bag of options that control this resource's behavior.
    The following state arguments are supported:
    AveragePrecision double

    Average precision of the trained model

    CompartmentId string

    (Updatable) Compartment Identifier

    ConfidenceThreshold double

    Confidence ratio of the calculation

    DefinedTags Dictionary<string, object>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    (Updatable) A short description of the Model.

    DisplayName string

    (Updatable) Model Identifier

    FreeformTags Dictionary<string, object>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    MaxTrainingDurationInHours double

    The maximum duration in hours for which the training will run.

    Metrics string

    Complete Training Metrics for successful trained model

    ModelType string

    The type of the model.

    ModelVersion string

    Model version.

    Precision double

    Precision of the trained model

    ProjectId string

    The OCID of the project to associate with the model.

    Recall double

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags Dictionary<string, object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TestingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours double

    Total hours actually used for training

    TrainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    AveragePrecision float64

    Average precision of the trained model

    CompartmentId string

    (Updatable) Compartment Identifier

    ConfidenceThreshold float64

    Confidence ratio of the calculation

    DefinedTags map[string]interface{}

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    Description string

    (Updatable) A short description of the Model.

    DisplayName string

    (Updatable) Model Identifier

    FreeformTags map[string]interface{}

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    IsQuickMode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    LifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    MaxTrainingDurationInHours float64

    The maximum duration in hours for which the training will run.

    Metrics string

    Complete Training Metrics for successful trained model

    ModelType string

    The type of the model.

    ModelVersion string

    Model version.

    Precision float64

    Precision of the trained model

    ProjectId string

    The OCID of the project to associate with the model.

    Recall float64

    Recall of the trained model

    State string

    The current state of the Model.

    SystemTags map[string]interface{}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    TestImageCount int

    Total number of testing Images

    TestingDataset ModelTestingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    TimeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    TimeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    TotalImageCount int

    Total number of training Images

    TrainedDurationInHours float64

    Total hours actually used for training

    TrainingDataset ModelTrainingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    ValidationDataset ModelValidationDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision Double

    Average precision of the trained model

    compartmentId String

    (Updatable) Compartment Identifier

    confidenceThreshold Double

    Confidence ratio of the calculation

    definedTags Map<String,Object>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    (Updatable) A short description of the Model.

    displayName String

    (Updatable) Model Identifier

    freeformTags Map<String,Object>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours Double

    The maximum duration in hours for which the training will run.

    metrics String

    Complete Training Metrics for successful trained model

    modelType String

    The type of the model.

    modelVersion String

    Model version.

    precision Double

    Precision of the trained model

    projectId String

    The OCID of the project to associate with the model.

    recall Double

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<String,Object>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Integer

    Total number of testing Images

    testingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Integer

    Total number of training Images

    trainedDurationInHours Double

    Total hours actually used for training

    trainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision number

    Average precision of the trained model

    compartmentId string

    (Updatable) Compartment Identifier

    confidenceThreshold number

    Confidence ratio of the calculation

    definedTags {[key: string]: any}

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description string

    (Updatable) A short description of the Model.

    displayName string

    (Updatable) Model Identifier

    freeformTags {[key: string]: any}

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails string

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours number

    The maximum duration in hours for which the training will run.

    metrics string

    Complete Training Metrics for successful trained model

    modelType string

    The type of the model.

    modelVersion string

    Model version.

    precision number

    Precision of the trained model

    projectId string

    The OCID of the project to associate with the model.

    recall number

    Recall of the trained model

    state string

    The current state of the Model.

    systemTags {[key: string]: any}

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount number

    Total number of testing Images

    testingDataset ModelTestingDataset

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated string

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated string

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount number

    Total number of training Images

    trainedDurationInHours number

    Total hours actually used for training

    trainingDataset ModelTrainingDataset

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset ModelValidationDataset

    The base entity for a Dataset, which is the input for Model creation.

    average_precision float

    Average precision of the trained model

    compartment_id str

    (Updatable) Compartment Identifier

    confidence_threshold float

    Confidence ratio of the calculation

    defined_tags Mapping[str, Any]

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description str

    (Updatable) A short description of the Model.

    display_name str

    (Updatable) Model Identifier

    freeform_tags Mapping[str, Any]

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    is_quick_mode bool

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycle_details str

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    max_training_duration_in_hours float

    The maximum duration in hours for which the training will run.

    metrics str

    Complete Training Metrics for successful trained model

    model_type str

    The type of the model.

    model_version str

    Model version.

    precision float

    Precision of the trained model

    project_id str

    The OCID of the project to associate with the model.

    recall float

    Recall of the trained model

    state str

    The current state of the Model.

    system_tags Mapping[str, Any]

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    test_image_count int

    Total number of testing Images

    testing_dataset ModelTestingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    time_created str

    The time the Model was created. An RFC3339 formatted datetime string

    time_updated str

    The time the Model was updated. An RFC3339 formatted datetime string

    total_image_count int

    Total number of training Images

    trained_duration_in_hours float

    Total hours actually used for training

    training_dataset ModelTrainingDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    validation_dataset ModelValidationDatasetArgs

    The base entity for a Dataset, which is the input for Model creation.

    averagePrecision Number

    Average precision of the trained model

    compartmentId String

    (Updatable) Compartment Identifier

    confidenceThreshold Number

    Confidence ratio of the calculation

    definedTags Map<Any>

    (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}

    description String

    (Updatable) A short description of the Model.

    displayName String

    (Updatable) Model Identifier

    freeformTags Map<Any>

    (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}

    isQuickMode Boolean

    If It's true, Training is set for recommended epochs needed for quick training.

    lifecycleDetails String

    A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.

    maxTrainingDurationInHours Number

    The maximum duration in hours for which the training will run.

    metrics String

    Complete Training Metrics for successful trained model

    modelType String

    The type of the model.

    modelVersion String

    Model version.

    precision Number

    Precision of the trained model

    projectId String

    The OCID of the project to associate with the model.

    recall Number

    Recall of the trained model

    state String

    The current state of the Model.

    systemTags Map<Any>

    Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}

    testImageCount Number

    Total number of testing Images

    testingDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    timeCreated String

    The time the Model was created. An RFC3339 formatted datetime string

    timeUpdated String

    The time the Model was updated. An RFC3339 formatted datetime string

    totalImageCount Number

    Total number of training Images

    trainedDurationInHours Number

    Total hours actually used for training

    trainingDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    validationDataset Property Map

    The base entity for a Dataset, which is the input for Model creation.

    Supporting Types

    ModelTestingDataset, ModelTestingDatasetArgs

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType string

    Type of the Dataset.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    dataset_type str

    Type of the Dataset.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    ModelTrainingDataset, ModelTrainingDatasetArgs

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType string

    Type of the Dataset.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    dataset_type str

    Type of the Dataset.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    ModelValidationDataset, ModelValidationDatasetArgs

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    DatasetType string

    Type of the Dataset.

    Bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    DatasetId string

    The OCID of the Data Science Labeling Dataset.

    NamespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    Object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType string

    Type of the Dataset.

    bucket string

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId string

    The OCID of the Data Science Labeling Dataset.

    namespaceName string

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object string

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    dataset_type str

    Type of the Dataset.

    bucket str

    The name of the ObjectStorage bucket that contains the input data file.

    dataset_id str

    The OCID of the Data Science Labeling Dataset.

    namespace_name str

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object str

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    datasetType String

    Type of the Dataset.

    bucket String

    The name of the ObjectStorage bucket that contains the input data file.

    datasetId String

    The OCID of the Data Science Labeling Dataset.

    namespaceName String

    The namespace name of the ObjectStorage bucket that contains the input data file.

    object String

    The object name of the input data file.

    ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values

    Import

    Models can be imported using the id, e.g.

     $ pulumi import oci:AiVision/model:Model test_model "id"
    

    Package Details

    Repository
    oci pulumi/pulumi-oci
    License
    Apache-2.0
    Notes

    This Pulumi package is based on the oci Terraform Provider.

    oci logo
    Oracle Cloud Infrastructure v1.11.0 published on Wednesday, Sep 27, 2023 by Pulumi