Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io
pinecone.getEs
Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io
Indexes data source
Using getEs
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getEs(opts?: InvokeOptions): Promise<GetEsResult>
function getEsOutput(opts?: InvokeOptions): Output<GetEsResult>def get_es(opts: Optional[InvokeOptions] = None) -> GetEsResult
def get_es_output(opts: Optional[InvokeOptions] = None) -> Output[GetEsResult]func GetEs(ctx *Context, opts ...InvokeOption) (*GetEsResult, error)
func GetEsOutput(ctx *Context, opts ...InvokeOption) GetEsResultOutput> Note: This function is named GetEs in the Go SDK.
public static class GetEs
{
public static Task<GetEsResult> InvokeAsync(InvokeOptions? opts = null)
public static Output<GetEsResult> Invoke(InvokeOptions? opts = null)
}public static CompletableFuture<GetEsResult> getEs(InvokeOptions options)
public static Output<GetEsResult> getEs(InvokeOptions options)
fn::invoke:
function: pinecone:index/getEs:getEs
arguments:
# arguments dictionarygetEs Result
The following output properties are available:
- Id string
- Indexes identifier
- Indexes
List<Pinecone
Database. Pinecone. Outputs. Get Es Index> - List of the indexes in your project
- Id string
- Indexes identifier
- Indexes
[]Get
Es Index - List of the indexes in your project
- id String
- Indexes identifier
- indexes
List<Get
Es Index> - List of the indexes in your project
- id string
- Indexes identifier
- indexes
Get
Es Index[] - List of the indexes in your project
- id str
- Indexes identifier
- indexes
Sequence[Get
Es Index] - List of the indexes in your project
- id String
- Indexes identifier
- indexes List<Property Map>
- List of the indexes in your project
Supporting Types
GetEsIndex
- Deletion
Protection string - Index deletion protection configuration
- Dimension int
- Index dimension
- Embed
Pinecone
Database. Pinecone. Inputs. Get Es Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- The URL address where the index is hosted.
- Metric string
- Index metric
- Name string
- Index name
- Spec
Pinecone
Database. Pinecone. Inputs. Get Es Index Spec - Spec
- Status
Pinecone
Database. Pinecone. Inputs. Get Es Index Status - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- Dictionary<string, string>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Vector
Type string - Index vector type
- Deletion
Protection string - Index deletion protection configuration
- Dimension int
- Index dimension
- Embed
Get
Es Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- Host string
- The URL address where the index is hosted.
- Metric string
- Index metric
- Name string
- Index name
- Spec
Get
Es Index Spec - Spec
- Status
Get
Es Index Status - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- map[string]string
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- Vector
Type string - Index vector type
- deletion
Protection String - Index deletion protection configuration
- dimension Integer
- Index dimension
- embed
Get
Es Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- The URL address where the index is hosted.
- metric String
- Index metric
- name String
- Index name
- spec
Get
Es Index Spec - Spec
- status
Get
Es Index Status - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- Map<String,String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- vector
Type String - Index vector type
- deletion
Protection string - Index deletion protection configuration
- dimension number
- Index dimension
- embed
Get
Es Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host string
- The URL address where the index is hosted.
- metric string
- Index metric
- name string
- Index name
- spec
Get
Es Index Spec - Spec
- status
Get
Es Index Status - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- {[key: string]: string}
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- vector
Type string - Index vector type
- deletion_
protection str - Index deletion protection configuration
- dimension int
- Index dimension
- embed
Get
Es Index Embed - Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host str
- The URL address where the index is hosted.
- metric str
- Index metric
- name str
- Index name
- spec
Get
Es Index Spec - Spec
- status
Get
Es Index Status - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- Mapping[str, str]
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- vector_
type str - Index vector type
- deletion
Protection String - Index deletion protection configuration
- dimension Number
- Index dimension
- embed Property Map
- Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
- host String
- The URL address where the index is hosted.
- metric String
- Index metric
- name String
- Index name
- spec Property Map
- Spec
- status Property Map
- Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
- Map<String>
- Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
- vector
Type String - Index vector type
GetEsIndexEmbed
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map Dictionary<string, string> - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters Dictionary<string, string> - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters Dictionary<string, string> - The write parameters for the embedding model.
- Dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- Field
Map map[string]string - Identifies the name of the text field from your document model that will be embedded.
- Metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- Model string
- the name of the embedding model to use for the index.
- Read
Parameters map[string]string - The read parameters for the embedding model.
- Vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- Write
Parameters map[string]string - The write parameters for the embedding model.
- dimension Integer
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String,String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String,String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String,String> - The write parameters for the embedding model.
- dimension number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map {[key: string]: string} - Identifies the name of the text field from your document model that will be embedded.
- metric string
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model string
- the name of the embedding model to use for the index.
- read
Parameters {[key: string]: string} - The read parameters for the embedding model.
- vector
Type string - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters {[key: string]: string} - The write parameters for the embedding model.
- dimension int
- The dimension of the embedding model, specifying the size of the output vector.
- field_
map Mapping[str, str] - Identifies the name of the text field from your document model that will be embedded.
- metric str
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model str
- the name of the embedding model to use for the index.
- read_
parameters Mapping[str, str] - The read parameters for the embedding model.
- vector_
type str - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write_
parameters Mapping[str, str] - The write parameters for the embedding model.
- dimension Number
- The dimension of the embedding model, specifying the size of the output vector.
- field
Map Map<String> - Identifies the name of the text field from your document model that will be embedded.
- metric String
- The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
- model String
- the name of the embedding model to use for the index.
- read
Parameters Map<String> - The read parameters for the embedding model.
- vector
Type String - The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
- write
Parameters Map<String> - The write parameters for the embedding model.
GetEsIndexSpec
- Pod
Pinecone
Database. Pinecone. Inputs. Get Es Index Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Pinecone
Database. Pinecone. Inputs. Get Es Index Spec Serverless - Configuration needed to deploy a serverless index.
- Pod
Get
Es Index Spec Pod - Configuration needed to deploy a pod-based index.
- Serverless
Get
Es Index Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Es Index Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Es Index Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Es Index Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Es Index Spec Serverless - Configuration needed to deploy a serverless index.
- pod
Get
Es Index Spec Pod - Configuration needed to deploy a pod-based index.
- serverless
Get
Es Index Spec Serverless - Configuration needed to deploy a serverless index.
- pod Property Map
- Configuration needed to deploy a pod-based index.
- serverless Property Map
- Configuration needed to deploy a serverless index.
GetEsIndexSpecPod
- Environment string
- The environment where the index is hosted.
- Metadata
Config PineconeDatabase. Pinecone. Inputs. Get Es Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- Environment string
- The environment where the index is hosted.
- Metadata
Config GetEs Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- Pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- Pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- Replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- Source
Collection string - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- metadata
Config GetEs Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods Integer
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Integer
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Integer
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
- environment string
- The environment where the index is hosted.
- metadata
Config GetEs Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type string - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection string - The name of the collection to create an index from.
- environment str
- The environment where the index is hosted.
- metadata_
config GetEs Index Spec Pod Metadata Config - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod_
type str - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods int
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas int
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- int
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source_
collection str - The name of the collection to create an index from.
- environment String
- The environment where the index is hosted.
- metadata
Config Property Map - Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
- pod
Type String - The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
- pods Number
- The number of pods to be used in the index. This should be equal to shards x replicas.'
- replicas Number
- The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
- Number
- The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
- source
Collection String - The name of the collection to create an index from.
GetEsIndexSpecPodMetadataConfig
- Indexeds List<string>
- The indexed fields.
- Indexeds []string
- The indexed fields.
- indexeds List<String>
- The indexed fields.
- indexeds string[]
- The indexed fields.
- indexeds Sequence[str]
- The indexed fields.
- indexeds List<String>
- The indexed fields.
GetEsIndexSpecServerless
GetEsIndexStatus
Package Details
- Repository
- pinecone pinecone-io/pulumi-pinecone
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
pineconeTerraform Provider.
Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io
