1. Packages
  2. Pinecone
  3. API Docs
  4. getEs
Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io

pinecone.getEs

Get Started
pinecone logo
Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io

    Indexes data source

    Using getEs

    Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.

    function getEs(opts?: InvokeOptions): Promise<GetEsResult>
    function getEsOutput(opts?: InvokeOptions): Output<GetEsResult>
    def get_es(opts: Optional[InvokeOptions] = None) -> GetEsResult
    def get_es_output(opts: Optional[InvokeOptions] = None) -> Output[GetEsResult]
    func GetEs(ctx *Context, opts ...InvokeOption) (*GetEsResult, error)
    func GetEsOutput(ctx *Context, opts ...InvokeOption) GetEsResultOutput

    > Note: This function is named GetEs in the Go SDK.

    public static class GetEs 
    {
        public static Task<GetEsResult> InvokeAsync(InvokeOptions? opts = null)
        public static Output<GetEsResult> Invoke(InvokeOptions? opts = null)
    }
    public static CompletableFuture<GetEsResult> getEs(InvokeOptions options)
    public static Output<GetEsResult> getEs(InvokeOptions options)
    
    fn::invoke:
      function: pinecone:index/getEs:getEs
      arguments:
        # arguments dictionary

    getEs Result

    The following output properties are available:

    Id string
    Indexes identifier
    Indexes List<PineconeDatabase.Pinecone.Outputs.GetEsIndex>
    List of the indexes in your project
    Id string
    Indexes identifier
    Indexes []GetEsIndex
    List of the indexes in your project
    id String
    Indexes identifier
    indexes List<GetEsIndex>
    List of the indexes in your project
    id string
    Indexes identifier
    indexes GetEsIndex[]
    List of the indexes in your project
    id str
    Indexes identifier
    indexes Sequence[GetEsIndex]
    List of the indexes in your project
    id String
    Indexes identifier
    indexes List<Property Map>
    List of the indexes in your project

    Supporting Types

    GetEsIndex

    DeletionProtection string
    Index deletion protection configuration
    Dimension int
    Index dimension
    Embed PineconeDatabase.Pinecone.Inputs.GetEsIndexEmbed
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    Host string
    The URL address where the index is hosted.
    Metric string
    Index metric
    Name string
    Index name
    Spec PineconeDatabase.Pinecone.Inputs.GetEsIndexSpec
    Spec
    Status PineconeDatabase.Pinecone.Inputs.GetEsIndexStatus
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    Tags Dictionary<string, string>
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    VectorType string
    Index vector type
    DeletionProtection string
    Index deletion protection configuration
    Dimension int
    Index dimension
    Embed GetEsIndexEmbed
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    Host string
    The URL address where the index is hosted.
    Metric string
    Index metric
    Name string
    Index name
    Spec GetEsIndexSpec
    Spec
    Status GetEsIndexStatus
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    Tags map[string]string
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    VectorType string
    Index vector type
    deletionProtection String
    Index deletion protection configuration
    dimension Integer
    Index dimension
    embed GetEsIndexEmbed
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    host String
    The URL address where the index is hosted.
    metric String
    Index metric
    name String
    Index name
    spec GetEsIndexSpec
    Spec
    status GetEsIndexStatus
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    tags Map<String,String>
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    vectorType String
    Index vector type
    deletionProtection string
    Index deletion protection configuration
    dimension number
    Index dimension
    embed GetEsIndexEmbed
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    host string
    The URL address where the index is hosted.
    metric string
    Index metric
    name string
    Index name
    spec GetEsIndexSpec
    Spec
    status GetEsIndexStatus
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    tags {[key: string]: string}
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    vectorType string
    Index vector type
    deletion_protection str
    Index deletion protection configuration
    dimension int
    Index dimension
    embed GetEsIndexEmbed
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    host str
    The URL address where the index is hosted.
    metric str
    Index metric
    name str
    Index name
    spec GetEsIndexSpec
    Spec
    status GetEsIndexStatus
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    tags Mapping[str, str]
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    vector_type str
    Index vector type
    deletionProtection String
    Index deletion protection configuration
    dimension Number
    Index dimension
    embed Property Map
    Specify the integrated inference embedding configuration for the index. Once set, the model cannot be changed. However, you can later update the embedding configuration—including field map, read parameters, and write parameters.
    host String
    The URL address where the index is hosted.
    metric String
    Index metric
    name String
    Index name
    spec Property Map
    Spec
    status Property Map
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata_config is present, only specified metadata fields are indexed. To specify metadata fields to index, provide an array of the following form: [example_metadata_field]
    tags Map<String>
    Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
    vectorType String
    Index vector type

    GetEsIndexEmbed

    Dimension int
    The dimension of the embedding model, specifying the size of the output vector.
    FieldMap Dictionary<string, string>
    Identifies the name of the text field from your document model that will be embedded.
    Metric string
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    Model string
    the name of the embedding model to use for the index.
    ReadParameters Dictionary<string, string>
    The read parameters for the embedding model.
    VectorType string
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    WriteParameters Dictionary<string, string>
    The write parameters for the embedding model.
    Dimension int
    The dimension of the embedding model, specifying the size of the output vector.
    FieldMap map[string]string
    Identifies the name of the text field from your document model that will be embedded.
    Metric string
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    Model string
    the name of the embedding model to use for the index.
    ReadParameters map[string]string
    The read parameters for the embedding model.
    VectorType string
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    WriteParameters map[string]string
    The write parameters for the embedding model.
    dimension Integer
    The dimension of the embedding model, specifying the size of the output vector.
    fieldMap Map<String,String>
    Identifies the name of the text field from your document model that will be embedded.
    metric String
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    model String
    the name of the embedding model to use for the index.
    readParameters Map<String,String>
    The read parameters for the embedding model.
    vectorType String
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    writeParameters Map<String,String>
    The write parameters for the embedding model.
    dimension number
    The dimension of the embedding model, specifying the size of the output vector.
    fieldMap {[key: string]: string}
    Identifies the name of the text field from your document model that will be embedded.
    metric string
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    model string
    the name of the embedding model to use for the index.
    readParameters {[key: string]: string}
    The read parameters for the embedding model.
    vectorType string
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    writeParameters {[key: string]: string}
    The write parameters for the embedding model.
    dimension int
    The dimension of the embedding model, specifying the size of the output vector.
    field_map Mapping[str, str]
    Identifies the name of the text field from your document model that will be embedded.
    metric str
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    model str
    the name of the embedding model to use for the index.
    read_parameters Mapping[str, str]
    The read parameters for the embedding model.
    vector_type str
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    write_parameters Mapping[str, str]
    The write parameters for the embedding model.
    dimension Number
    The dimension of the embedding model, specifying the size of the output vector.
    fieldMap Map<String>
    Identifies the name of the text field from your document model that will be embedded.
    metric String
    The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vectortype' is 'sparse', the metric must be 'dotproduct'. If the vectortype is dense, the metric defaults to 'cosine'.
    model String
    the name of the embedding model to use for the index.
    readParameters Map<String>
    The read parameters for the embedding model.
    vectorType String
    The index vector type associated with the model. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension will be nil.
    writeParameters Map<String>
    The write parameters for the embedding model.

    GetEsIndexSpec

    Pod PineconeDatabase.Pinecone.Inputs.GetEsIndexSpecPod
    Configuration needed to deploy a pod-based index.
    Serverless PineconeDatabase.Pinecone.Inputs.GetEsIndexSpecServerless
    Configuration needed to deploy a serverless index.
    Pod GetEsIndexSpecPod
    Configuration needed to deploy a pod-based index.
    Serverless GetEsIndexSpecServerless
    Configuration needed to deploy a serverless index.
    pod GetEsIndexSpecPod
    Configuration needed to deploy a pod-based index.
    serverless GetEsIndexSpecServerless
    Configuration needed to deploy a serverless index.
    pod GetEsIndexSpecPod
    Configuration needed to deploy a pod-based index.
    serverless GetEsIndexSpecServerless
    Configuration needed to deploy a serverless index.
    pod GetEsIndexSpecPod
    Configuration needed to deploy a pod-based index.
    serverless GetEsIndexSpecServerless
    Configuration needed to deploy a serverless index.
    pod Property Map
    Configuration needed to deploy a pod-based index.
    serverless Property Map
    Configuration needed to deploy a serverless index.

    GetEsIndexSpecPod

    Environment string
    The environment where the index is hosted.
    MetadataConfig PineconeDatabase.Pinecone.Inputs.GetEsIndexSpecPodMetadataConfig
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    PodType string
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    Pods int
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    Replicas int
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    Shards int
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    SourceCollection string
    The name of the collection to create an index from.
    Environment string
    The environment where the index is hosted.
    MetadataConfig GetEsIndexSpecPodMetadataConfig
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    PodType string
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    Pods int
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    Replicas int
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    Shards int
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    SourceCollection string
    The name of the collection to create an index from.
    environment String
    The environment where the index is hosted.
    metadataConfig GetEsIndexSpecPodMetadataConfig
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    podType String
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    pods Integer
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    replicas Integer
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    shards Integer
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    sourceCollection String
    The name of the collection to create an index from.
    environment string
    The environment where the index is hosted.
    metadataConfig GetEsIndexSpecPodMetadataConfig
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    podType string
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    pods number
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    replicas number
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    shards number
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    sourceCollection string
    The name of the collection to create an index from.
    environment str
    The environment where the index is hosted.
    metadata_config GetEsIndexSpecPodMetadataConfig
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    pod_type str
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    pods int
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    replicas int
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    shards int
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    source_collection str
    The name of the collection to create an index from.
    environment String
    The environment where the index is hosted.
    metadataConfig Property Map
    Configuration for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when metadata*config is present, only specified metadata fields are indexed. These configurations are only valid for use with pod-based indexes.
    podType String
    The type of pod to use. One of s1, p1, or p2 appended with . and one of x1, x2, x4, or x8.
    pods Number
    The number of pods to be used in the index. This should be equal to shards x replicas.'
    replicas Number
    The number of replicas. Replicas duplicate your index. They provide higher availability and throughput. Replicas can be scaled up or down as your needs change.
    shards Number
    The number of shards. Shards split your data across multiple pods so you can fit more data into an index.
    sourceCollection String
    The name of the collection to create an index from.

    GetEsIndexSpecPodMetadataConfig

    Indexeds List<string>
    The indexed fields.
    Indexeds []string
    The indexed fields.
    indexeds List<String>
    The indexed fields.
    indexeds string[]
    The indexed fields.
    indexeds Sequence[str]
    The indexed fields.
    indexeds List<String>
    The indexed fields.

    GetEsIndexSpecServerless

    Cloud string
    Ready.
    Region string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    Cloud string
    Ready.
    Region string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    cloud String
    Ready.
    region String
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    cloud string
    Ready.
    region string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    cloud str
    Ready.
    region str
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    cloud String
    Ready.
    region String
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready

    GetEsIndexStatus

    Ready bool
    Ready.
    State string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    Ready bool
    Ready.
    State string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    ready Boolean
    Ready.
    state String
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    ready boolean
    Ready.
    state string
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    ready bool
    Ready.
    state str
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready
    ready Boolean
    Ready.
    state String
    Initializing InitializationFailed ScalingUp ScalingDown ScalingUpPodSize ScalingDownPodSize Upgrading Terminating Ready

    Package Details

    Repository
    pinecone pinecone-io/pulumi-pinecone
    License
    Apache-2.0
    Notes
    This Pulumi package is based on the pinecone Terraform Provider.
    pinecone logo
    Pinecone v2.0.2 published on Wednesday, Nov 5, 2025 by pinecone-io
      Meet Neo: Your AI Platform Teammate