1. Low-Latency Inference Serving Cache using AWS MemoryDB

    Python

    To create a low-latency inference serving cache using AWS MemoryDB, we'll use Pulumi to provision the necessary AWS resources. MemoryDB for Redis is a Redis-compatible, fully-managed, in-memory database service that delivers extremely fast performance. It's suitable for use cases such as caching, session stores, gaming leaderboards, geospatial services, and real-time analytics.

    Here's a step-by-step guide on how we'll create our MemoryDB cluster using Pulumi:

    1. We'll set up an Access Control List (ACL) that controls which users can access the MemoryDB cluster.
    2. We'll provision a MemoryDB cluster, specifying details like node type, number of shards, and whether Transport Layer Security (TLS) is enabled.
    3. We'll create a subnet group for the cluster to define which subnets within a VPC the cluster can use.
    4. If necessary, we'll create a parameter group to manage the runtime settings of the MemoryDB cluster.
    5. We'll output important information about our setup, such as the MemoryDB cluster endpoint, for use by client applications.

    Let's begin with the Pulumi Python program to accomplish this setup:

    import pulumi import pulumi_aws as aws # Provision an Access Control List (ACL) for the MemoryDB cluster memorydb_acl = aws.memorydb.Acl("memorydbAcl", name="memorydb-acl", user_names=["default"]) # Default user is just an example. Set appropriate user names for your use case. # Create a MemoryDB subnet group memorydb_subnet_group = aws.memorydb.SubnetGroup("memorydbSubnetGroup", subnet_ids=["subnet-0bb1c79de3EXAMPLE", "subnet-0bb2c79de3EXAMPLE"], # Replace with actual subnet ids description="My MemoryDB subnet group") # If you need to create a MemoryDB parameter group memorydb_parameter_group = aws.memorydb.ParameterGroup("memorydbParameterGroup", family="memorydb-redis6", # Specify the correct parameter group family for your use case description="My MemoryDB parameter group") # Provision a MemoryDB cluster memorydb_cluster = aws.memorydb.Cluster("memorydbCluster", name="my-memorydb-cluster", acl_name=memorydb_acl.name, node_type="db.r6g.large", # Choose an appropriate node type for your use case num_shards=1, # You can adjust the number of shards based on your caching needs subnet_group_name=memorydb_subnet_group.name, tls_enabled=True, # Disable if TLS is not required, but recommended to be True for security parameter_group_name=memorydb_parameter_group.name) # Output the MemoryDB cluster endpoint pulumi.export("memorydb_cluster_endpoint", memorydb_cluster.cluster_endpoint.apply(lambda endpoint: endpoint.address))

    Here's what each resource in the program does:

    • memorydb.Acl: Controls access to the MemoryDB cluster. The user_names parameter specifies which users have access to the cluster.
    • memorydb.SubnetGroup: Defines a group of subnets for the MemoryDB cluster. MemoryDB clusters are placed within a VPC, and the subnet group defines which subnets the cluster can use.
    • memorydb.ParameterGroup: Manages the runtime configuration of the cluster. This is optional and depends on whether you need custom parameters for your use case.
    • memorydb.Cluster: Represents the MemoryDB cluster itself. We specify the ACL, node type, number of shards, subnet group, and other details necessary for the cluster to operate correctly.

    By exporting the cluster endpoint, you'll have the address needed to connect with your MemoryDB cluster and start caching data for your low-latency, inference-serving purposes.

    For more information on the AWS MemoryDB resources, you can visit the following links: