1. Custom Training Operator for ML on Kubernetes

    Python

    To create a custom training operator for Machine Learning (ML) on Kubernetes using Pulumi, we will use Kubernetes Custom Resource Definitions (CRDs) to define custom resources that represent our ML training jobs. These CRDs act as extensions to the Kubernetes API to create and manage new kinds of resources.

    Once we have defined our CRD to represent a training job, we can then create instances of the training resource which Kubernetes will manage. Kubernetes operators commonly observe, modify, and manage these resources; however, writing an operator requires additional logic, usually coded in a programming language like Go, and is beyond the scope of infrastructure provisioning. Here we’ll focus on defining the necessary CRD and creating an instance of it.

    For the actual work of training machine learning models, you'd typically use established tools like Kubeflow or ML frameworks' operators (like TensorFlow or PyTorch operators) which manage the lifecycle and all the complexities of running machine-learning workloads on Kubernetes.

    Below is a Pulumi Python program that shows you how to create a CustomResourceDefinition (CRD) and an instance of a custom resource that could represent a ML training job. Note that we're using a generic example for illustrative purposes, and the details of your CRD will depend on the exact specifications of your training job and the structure of the machine learning workloads you wish to run.

    import pulumi import pulumi_kubernetes as kubernetes # Define a CustomResourceDefinition (CRD) for the ML training job. ml_training_crd = kubernetes.apiextensions.v1.CustomResourceDefinition( "ml-training-crd", metadata=kubernetes.meta.v1.ObjectMetaArgs( name="mltrainings.example.com" ), spec=kubernetes.apiextensions.v1.CustomResourceDefinitionSpecArgs( group="example.com", versions=[kubernetes.apiextensions.v1.CustomResourceDefinitionVersionArgs( name="v1", served=True, storage=True, schema=kubernetes.apiextensions.v1.CustomResourceValidationArgs( open_api_v3_schema=kubernetes.apiextensions.v1.JSONSchemaPropsArgs( type="object", properties={ "spec": kubernetes.apiextensions.v1.JSONSchemaPropsArgs( type="object", properties={ "modelType": kubernetes.apiextensions.v1.JSONSchemaPropsArgs( type="string", description="The type of the ML model to train." ), "trainingData": kubernetes.apiextensions.v1.JSONSchemaPropsArgs( type="string", description="Location of the training data." ), "hyperparameters": kubernetes.apiextensions.v1.JSONSchemaPropsArgs( type="object", additional_properties=True, description="Hyperparameters necessary for training the ML model." ) }, required=["modelType", "trainingData"] ) } ) ) )], scope="Namespaced", names=kubernetes.apiextensions.v1.CustomResourceDefinitionNamesArgs( plural="mltrainings", singular="mltraining", kind="MLTraining", short_names=["mlt"] ) ) ) # Create an instance of the MLTraining CustomResource. ml_training_job = kubernetes.apiextensions.CustomResource( "ml-training-job", api_version="example.com/v1", kind="MLTraining", metadata=kubernetes.meta.v1.ObjectMetaArgs( name="example-training-job" ), spec={ "modelType": "Neural Network", "trainingData": "s3://bucket/dataset", "hyperparameters": { "learningRate": 0.01, "batchSize": 100 } } ) # Export the name of the ML training job pulumi.export("ml_training_job_name", ml_training_job.metadata["name"])

    Here's an explanation of what the code does:

    1. We import the Pulumi and Pulumi Kubernetes libraries.
    2. We define a CustomResourceDefinition (ml_training_crd) with:
      • A unique name for the CRD in the Kubernetes API: mltrainings.example.com.
      • The schema for this CRD, including the specifications for required fields in the spec, like modelType and trainingData.
    3. We then create an instance of the MLTraining custom resource (ml_training_job) with the actual specifications for a hypothetical training job, such as the type of model and the location of the training data.
    4. Finally, we export the name of the ML training job to be accessible outside the Pulumi program.

    To run this Pulumi program, you'd need to have Pulumi installed and set up with access to a Kubernetes cluster, then run the usual pulumi up command which will prompt Pulumi to apply the changes defined in the code to your Kubernetes cluster.

    Remember that this is just a starting point for building custom operators. You would normally need additional configurations and logic to create a fully functional ML training operator on Kubernetes.