Auto-scaling ML Model Serving Workloads with App Mesh
PythonAuto-scaling is a critical feature for machine learning (ML) workloads, allowing you to handle variable load efficiently. When implementing auto-scaling for ML model serving with AWS, you can utilize multiple services to set up a robust and responsive environment. AWS App Mesh is particularly useful as it allows you to control and monitor microservices without requiring changes to the application code.
AWS App Mesh is a service mesh that provides application-level networking, making it easy to manage microservice architectures. It standardizes how your microservices communicate, giving you end-to-end visibility and ensuring high-availability.
To set up auto-scaling for ML workloads, you can use Kubernetes along with AWS App Mesh. Kubernetes provides native support for auto-scaling through the Horizontal Pod Autoscaler (HPA), which automatically scales the number of pods in a deployment based on observed CPU utilization or custom metrics.
In this program, we'll define the infrastructure needed for auto-scaling ML model serving workloads using Pulumi with AWS App Mesh and Kubernetes.
Here are the steps we will follow in the program:
- Set up an AWS App Mesh environment, including a mesh, virtual nodes, virtual services, and a virtual router.
- Deploy a Kubernetes cluster and configure the Horizontal Pod Autoscaler (HPA).
- Configure the HPA to scale based on custom metrics appropriate for ML workloads (e.g., request latency, queue depth, etc.).
import pulumi import pulumi_aws as aws import pulumi_kubernetes as k8s from pulumi_kubernetes.apps.v1 import Deployment from pulumi_kubernetes.autoscaling.v2beta1 import HorizontalPodAutoscaler # Initialize AWS provider configuration. aws_provider = aws.Provider('aws', region='us-west-2') # Create an AWS App Mesh Mesh resource. This acts as the logical boundary for the network traffic # between the services that reside within it. app_mesh = aws.appmesh.Mesh('appMesh', opts=pulumi.ResourceOptions(provider=aws_provider)) # Define the Virtual Node(s) for the ML workloads. A Virtual Node acts as a logical pointer to a # particular service. virtual_node = aws.appmesh.VirtualNode( 'virtualNode', mesh_name=app_mesh.name, spec=aws.appmesh.VirtualNodeSpecArgs( # Definition for the service discovery mechanism for the virtual node. service_discovery=aws.appmesh.VirtualNodeSpecServiceDiscoveryArgs( dns=aws.appmesh.VirtualNodeSpecServiceDiscoveryDnsArgs( hostname='your-ml-service.local' ) ), ), opts=pulumi.ResourceOptions(provider=aws_provider) ) # Define a Virtual Service, which is an abstraction of a real service provided by a virtual node. virtual_service = aws.appmesh.VirtualService( 'virtualService', mesh_name=app_mesh.name, spec=aws.appmesh.VirtualServiceSpecArgs( provider=aws.appmesh.VirtualServiceSpecProviderArgs( virtual_node=aws.appmesh.VirtualServiceSpecProviderVirtualNodeArgs( virtual_node_name=virtual_node.name ) ) ), opts=pulumi.ResourceOptions(provider=aws_provider) ) # Deploy a Kubernetes cluster. For demonstration purposes, we are going to use a mocked cluster. # In a real-world scenario, you would configure your Kubernetes cluster here. k8s_cluster = [...] # Your Kubernetes cluster configuration. # Deploy the ML service as a Kubernetes Deployment. ml_deployment = Deployment( 'mlDeployment', spec={ 'selector': {'matchLabels': {'app': 'ml-service'}}, 'replicas': 1, 'template': { 'metadata': {'labels': {'app': 'ml-service'}}, 'spec': { 'containers': [{ 'name': 'ml-container', 'image': 'your-ml-model-image:latest', # Replace with your ML model serving image. 'ports': [{'containerPort': 8080}] }] } } } ) # Create a Horizontal Pod Autoscaler to automatically scale the number of pods # in the ML service deployment based on observed CPU utilization. hpa = HorizontalPodAutoscaler( 'mlHpa', spec={ 'scaleTargetRef': { 'apiVersion': 'apps/v1', 'kind': 'Deployment', 'name': ml_deployment.metadata['name'] }, # Add custom metrics for your ML model serving here. 'minReplicas': 1, 'maxReplicas': 10, 'metrics': [{ 'type': 'Resource', 'resource': { 'name': 'cpu', 'target': { 'type': 'Utilization', 'averageUtilization': 80 } } }] } ) # Export the App Mesh Virtual Node name and endpoint for the ML service. pulumi.export('virtual_node_name', virtual_node.name) pulumi.export('ml_service_endpoint', f"http://{virtual_node.spec.service_discovery.dns.hostname}")
In this program, you're defining:
- An App Mesh mesh as a network boundary.
- A virtual node which represents a backend service.
- A virtual service that abstracts the actual backend service behind a virtual node.
- A Kubernetes deployment for deploying your ML model as a microservice.
- A Horizontal Pod Autoscaler to scale your service based on CPU utilization or custom metrics.
Remember to replace the values for
mesh_name
,hostname
, andimage
with your specific details.Please make sure AWS CLI and Pulumi are properly configured to interact with your AWS account and the Kubernetes cluster. Additionally, replace the placeholder
[...]
with your actual Kubernetes cluster configuration depending on your environment setup.