1. AI Model Serving with Istio on Kubernetes


    To serve an AI model with Istio on Kubernetes using Pulumi, you will need a containerized AI model, a Kubernetes cluster, and an Istio service mesh installed on that cluster. We will set up a Kubernetes service and a deployment that hosts the AI model. Istio will then manage the traffic to the service, allowing features like canary deployments, fault injection, and load balancing.

    The core components we'll be using are:

    1. pulumi_kubernetes for the Kubernetes resources.
    2. pulumi_istio in case there's a separate Pulumi package for Istio resources (though typically the Kubernetes provider is sufficient because Istio resources are Kubernetes CustomResourceDefinitions).
    3. A Docker image for the AI model, usually hosted on a container registry.

    Due to the complex nature of Kubernetes and Istio configuration, the example below is more conceptual and needs to be adjusted to fit the AI model serving your specific requirements. In the absence of a dedicated Pulumi provider for Istio, the Kubernetes provider is utilized to define Istio resources through Kubernetes' CustomResourceDefinition.

    Here's a program that sets up a simple AI model serving using a Kubernetes Service and Deployment within an Istio-enabled cluster:

    import pulumi import pulumi_kubernetes as kubernetes # Pre-requirements: # - A Kubernetes cluster with Istio installed and istioctl available # - Docker image of the AI model should be available in a container registry # Please replace 'your_docker_image' with the actual image of your AI model. ai_model_image = 'your_docker_image' # Create a Kubernetes Namespace for the AI application, which will be Istio-enabled. app_namespace = kubernetes.core.v1.Namespace("ai-app-namespace", metadata=dict( name="ai-serving", labels={ "istio-injection": "enabled" # Enables automatic Istio sidecar injection for the namespace. }, ) ) # Define the Deployment for the AI model serving. ai_model_deployment = kubernetes.apps.v1.Deployment("ai-model-deployment", metadata=kubernetes.meta.v1.ObjectMetaArgs( namespace=app_namespace.metadata["name"], ), spec=kubernetes.apps.v1.DeploymentSpecArgs( selector=kubernetes.meta.v1.LabelSelectorArgs( match_labels={"app": "ai-model-serving"}, ), replicas=2, # Define the number of replicas. template=kubernetes.core.v1.PodTemplateSpecArgs( metadata=kubernetes.meta.v1.ObjectMetaArgs( labels={"app": "ai-model-serving"}, ), spec=kubernetes.core.v1.PodSpecArgs( containers=[ kubernetes.core.v1.ContainerArgs( name="ai-model-container", image=ai_model_image, ports=[kubernetes.core.v1.ContainerPortArgs(container_port=8080)], # Define the necessary environment variables, resources, volume mounts, etc. ), ], ), ), ), ) # Define the Kubernetes Service that exposes the AI model serving. ai_model_service = kubernetes.core.v1.Service("ai-model-service", metadata=kubernetes.meta.v1.ObjectMetaArgs( namespace=app_namespace.metadata["name"], labels={"app": "ai-model-serving"}, ), spec=kubernetes.core.v1.ServiceSpecArgs( selector={"app": "ai-model-serving"}, ports=[kubernetes.core.v1.ServicePortArgs( port=8080, target_port=8080, )], # Use ClusterIP for internal service exposure by default; consider LoadBalancer or NodePort for external exposure. type="ClusterIP", ), ) # Export the name of the namespace and the service spec pulumi.export('namespace', app_namespace.metadata["name"]) pulumi.export('service_spec', ai_model_service.spec)

    In this program:

    • We create a Kubernetes namespace called ai-serving with Istio sidecar injection enabled. The label istio-injection: enabled ensures that the Istio sidecar proxy will be automatically injected into your application pods, allowing them to become part of the Istio service mesh.

    • A deployment is defined, which includes the container image for the model, the number of required replicas, and port configurations. Replace 'your_docker_image' with the exact reference to your AI model's Docker image.

    • A Kubernetes service is created to expose the AI model serving deployment within the cluster on port 8080. For external exposure, you might choose a LoadBalancer or a NodePort service type instead of a ClusterIP.

    To complete this setup, you would also need VirtualServices, Gateway, and DestinationRule resources for Istio, which define the traffic management and routing rules for your service. These resources are part of the Istio's CustomResourceDefinitions and can be created using the Kubernetes provider in a similar way to Kubernetes native resources.

    Keep in mind that this is a starting point and a bare minimum setup to give you an idea. Depending on the specifics of the AI model, the Istio configuration, and the architecture, additional details and customizations will likely be necessary.