1. Maintaining Version-Controlled AI Model Configurations with AWS SSM Parameter Store


    To maintain version-controlled AI model configurations with AWS SSM (Systems Manager) Parameter Store, you can leverage the AWS SSM Parameter Store to store, manage, and retrieve configuration data.

    AWS SSM Parameter Store offers hierarchical storage for configuration data management and secrets management. It can store data such as passwords, database strings, and configuration data in the form of plain text or encrypted data. By using the SSM Parameter Store, you can keep a history of the changes to your configurations (each time a parameter is updated, a new version is created), and you can also use IAM (Identity and Access Management) policies to control access to these parameters.

    In Pulumi, you can utilize the aws.ssm.Parameter class from the pulumi_aws package to create and manage an SSM parameter. The following program will demonstrate how to create a new SSM parameter to store an AI model configuration in an encrypted state:

    import pulumi import pulumi_aws as aws # Create a KMS key for encrypting the parameter kms_key = aws.kms.Key("aiModelConfigKey", description="KMS key for encrypting AI model configurations") # Create an SSM Parameter to store the AI model configuration # Replace 'my-model-config' with your specific configuration data ai_model_config = aws.ssm.Parameter("aiModelConfig", name="/ai/model/config", type="SecureString", value="my-model-config", # This would be your actual configuration key_id=kms_key.id, # Use the KMS key for encryption description="AI model configuration parameter") # Export the SSM Parameter version and ARN pulumi.export("ai_model_config_version", ai_model_config.version) pulumi.export("ai_model_config_arn", ai_model_config.arn)

    Here's what each part of the program does:

    • KMS Key: We start by creating an AWS KMS Key. This key will be used to encrypt the contents of our SSM Parameter. The aws.kms.Key resource is used to create a new KMS key.

    • SSM Parameter: The aws.ssm.Parameter resource is used to create a new parameter in the SSM Parameter Store. We're storing an AI model configuration string as an encrypted SecureString type. We use the KMS Key created earlier for encryption by providing its ID to the key_id parameter. The name parameter specifies the unique name of the parameter, and the type indicates that this is a SecureString.

    • Exports: Finally, we export the version and ARN (Amazon Resource Name) of the SSM Parameter so that it can be referenced or used in other parts of your infrastructure as code or in applications retrieving the configuration.

    The value for the parameter would typically be your actual configuration data. For simplicity, we're using my-model-config as a placeholder.

    To store AI model configuration data securely and enable version control, you should update this configuration data by changing the value field and applying the update via Pulumi. AWS SSM Parameter Store will automatically version your parameter every time an update is made. You can always reference a specific version of the configuration in your applications.

    By using Pulumi with AWS SSM Parameter Store, you incorporate infrastructure as code principles into your configuration management, allowing for version control, automated updates, and auditable changes of your AI model configurations.

    Here is the link to the AWS SSM Parameter documentation on Pulumi for more details.