Google Cloud Platform
Google Cloud Platform guides for cloud-native applications, data analytics, and machine learning workloads.
534 guides available
Google Cloud Platform offers scalable computing, storage, and machine learning services. These guides help you provision GCP resources using Pulumi's infrastructure as code.
Popular Categories
Showing 12 of 534 guides (page 36 of 45)
Create GCP Datastream Streams
Set up real-time data streaming from sources to destinations with Google Cloud Datastream and Pulumi.
Create GCP Discovery Engine Data Stores
Deploy Google Cloud Discovery Engine data stores with Pulumi. Configure document collections for AI search.
Create GCP Healthcare Consent Stores
Deploy Google Cloud Healthcare consent management with Pulumi. Track user consents and documentation.
Create GCP Healthcare HL7v2 Stores
Deploy HL7v2 data stores in Google Cloud Healthcare with Pulumi. Configure FHIR-compliant message storage.
Create GCP Instance Templates
Deploy reusable Google Compute Engine VM instance templates with Pulumi for consistent infrastructure scaling.
Create GCP Memorystore Instances
Deploy Google Cloud Memorystore cache instances with Pulumi. Configure Redis/Valkey, replication, and networking.
Create GCP Parameter Manager Parameters
Store and manage application parameters with GCP Parameter Manager using Pulumi. Configure secure parameter storage.
Create GCP Regional Parameters
Deploy GCP Parameter Manager regional parameters with Pulumi. Manage configuration and secrets across regions.
Create GCP Regional Persistent Disks
Deploy Google Cloud regional persistent disks with Pulumi. Configure HDD/SSD storage and replication.
Create GCP Secret Manager Secrets
Manage sensitive data with Google Cloud Secret Manager in Pulumi. Store and access API keys and credentials.
Create GCP Service Account Keys
Generate and manage GCP service account keys with Pulumi. Configure authentication for applications.
Create GCP Vertex AI Feature Stores
Deploy Vertex AI Feature Stores with Pulumi. Manage datasets and annotations for ML pipelines.