Managing Confluent Kafka Clusters with Pulumi
Posted on
Event streaming is used across diverse industries that demand real-time data processing. Apache Kafka is the most popular open-source streaming platform. Confluent Cloud lets you run Kafka on the cloud provider of your choice.
In this blog post, you’ll use the Confluent Cloud Pulumi provider and Pulumi to create a Kafka cluster, topic, and customer account.
About Apache Kafka and Confluent Cloud
What is Apache Kafka?
Apache Kafka is an event store and stream-processing platform, used by more than 30% of the Fortune 500 today. Using Kafka streams, developers can write modern, event-driven applications for real-time data streaming and processing. Kafka is used across many industries, including gaming, financial services, healthcare, retail, automotive, and manufacturing.
Kafka was created to allow scalable high-throughput applications to store, analyze, and reprocess streaming data. However, managing Kafka clusters can require significant operational expertise, leading many organizations to look for a managed solution.
What is Confluent Cloud?
Confluent Cloud provides managed Kafka clusters along with major value-add features such as elasticity, integrated security, stream governance, and improved monitoring. Clusters can be provisioned in AWS, Azure, or Google Cloud to reduce network latency and egress charges. Confluent Cloud also offers cluster linking capabilities to on-prem producers and consumers for hybrid cloud scenarios.
Using Pulumi, you can manage your Confluent resources and maximize your organization’s ability to quickly ship modern, secure, event-driven workloads.
Initializing the Project
Before you can add Confluent resources to your Pulumi program, you’ll need to ensure you have a Confluent Cloud account and an API key. You can sign up for a free trial of Confluent Cloud if you do not already have a Confluent Cloud account. Create an API key and set its values as environment variables:
export CONFLUENT_CLOUD_API_KEY=<your API key>
export CONFLUENT_CLOUD_API_SECRET=<your API secret>
Now you can create a new directory and initialize the Pulumi program:
mkdir confluent-blog-post
cd confluent-blog-post
pulumi new typescript
After a few seconds, the Pulumi program has been initialized. Next, you’ll need to add a reference to the Pulumi Confluent provider:
npm i @pulumi/confluentcloud
Finally, you’ll need to add a reference to the top of the scaffolded index.ts
file:
import * as confluent from "@pulumi/confluentcloud";
Now you’re ready to create and manage Confluent resources!
Adding Resources
Your example architecture will have the following components:
- A Kafka cluster for our messages (“inventory”).
- An admin service account which you’ll use to create objects within the cluster (topics and users).
- A Kafka topic for our cluster, which will hold our sample messages.
- A producer service account, which you’ll use to write messages to the topic.
- A consumer service account, which you’ll use to read messages from the topic.
You’ll be keeping all of your resources in a single file: index.ts
.
The first resource you’ll need to create is a Confluent environment which is a container for the other Confluent resources you’ll be creating:
const env = new confluent.Environment("environment", {
displayName: "pulumi-confluent-blog",
});
Next, you’ll create a standard Kafka cluster. A couple notes about the cluster you’re creating:
- The cluster is a single-zone cluster for cost reasons, but if you’re creating a cluster for production scenarios you’ll likely want to use the
MULTI_ZONE
option foravailability
. - While this cluster is in AWS’ us-east-2 region, Confluent Cloud also supports Azure and Google Cloud as well as other regions within AWS. For a full list of supported options for the
cloud
andregion
attributes, see Cloud Providers and Regions for Confluent Cloud.
Add the following code to your Pulumi program:
const cluster = new confluent.KafkaCluster("cluster", {
displayName: "inventory",
availability: "SINGLE_ZONE",
cloud: "AWS",
region: "us-east-2",
environment: {
id: env.id,
},
standard: {}
});
Next, you’ll need to create the admin-level service account you’ll use to create our Kafka topic and our producer and consumer accounts. This app manager account is similar to the “DBA” account you may be familiar with in relational databases or the root account in Linux:
const serviceAccount = new confluent.ServiceAccount("app-manager", {
description: "Service account to manage 'inventory' Kafka cluster",
});
const roleBinding = new confluent.RoleBinding("app-manager-kafka-cluster-admin", {
principal: pulumi.interpolate`User:${serviceAccount.id}`,
roleName: "CloudClusterAdmin",
crnPattern: cluster.rbacCrn,
});
const managerApiKey = new confluent.ApiKey("app-manager-kafka-api-key", {
displayName: "app-manager-kafka-api-key",
description: "Kafka API Key that is owned by 'app-manager' service account",
owner: {
id: serviceAccount.id,
kind: serviceAccount.kind,
apiVersion: serviceAccount.apiVersion,
},
managedResource: {
id: cluster.id,
apiVersion: cluster.apiVersion,
kind: cluster.kind,
environment: {
id: env.id,
},
}
}, {
dependsOn: roleBinding
});
Next, you’ll create your Kafka topic using the cluster admin service account credentials you just created (see the credentials
input in the following code):
const topic = new confluent.KafkaTopic("orders", {
kafkaCluster: {
id: cluster.id,
},
topicName: "orders",
restEndpoint: cluster.restEndpoint,
credentials: {
key: managerApiKey.id,
secret: managerApiKey.secret,
},
});
Now that you have your topic, you need to create a producer service account and give that account permissions to write to the topic, again using the credentials of your cluster admin account:
const producerAccount = new confluent.ServiceAccount("producer", {
description: "Service account to produce to 'orders' topic of 'inventory' Kafka cluster",
});
const producerApiKey = new confluent.ApiKey("producer-api-key", {
owner: {
id: producerAccount.id,
kind: producerAccount.kind,
apiVersion: producerAccount.apiVersion,
},
managedResource: {
id: cluster.id,
apiVersion: cluster.apiVersion,
kind: cluster.kind,
environment: {
id: env.id,
},
},
});
new confluent.KafkaAcl("app-producer-write", {
kafkaCluster: {
id: cluster.id,
},
resourceType: "TOPIC",
resourceName: topic.topicName,
patternType: "LITERAL",
principal: pulumi.interpolate`User:${producerAccount.id}`,
host: "*",
operation: "WRITE",
permission: "ALLOW",
restEndpoint: cluster.restEndpoint,
credentials: {
key: managerApiKey.id,
secret: managerApiKey.secret,
}
});
Now you create our consumer account which will read messages from your Kafka topic. It’s created similarly to the producer:
const consumerAccount = new confluent.ServiceAccount("consumer", {
description: "Service account to consume from 'orders' topic of 'inventory' Kafka cluster",
});
const consumerApiKey = new confluent.ApiKey("consumer-api-key", {
owner: {
id: consumerAccount.id,
kind: consumerAccount.kind,
apiVersion: consumerAccount.apiVersion,
},
managedResource: {
id: cluster.id,
apiVersion: cluster.apiVersion,
kind: cluster.kind,
environment: {
id: env.id,
},
},
});
new confluent.KafkaAcl("consumer-read-topic-acl", {
kafkaCluster: {
id: cluster.id,
},
resourceType: "TOPIC",
resourceName: topic.topicName,
patternType: "LITERAL",
principal: pulumi.interpolate`User:${consumerAccount.id}`,
host: "*",
operation: "READ",
permission: "ALLOW",
restEndpoint: cluster.restEndpoint,
credentials: {
key: managerApiKey.id,
secret: managerApiKey.secret,
}
});
new confluent.KafkaAcl("consumer-read-group-acl", {
kafkaCluster: {
id: cluster.id,
},
resourceType: "GROUP",
resourceName: "confluent_cli_consumer_",
patternType: "PREFIXED",
principal: pulumi.interpolate`User:${consumerAccount.id}`,
host: "*",
operation: "READ",
permission: "ALLOW",
restEndpoint: cluster.restEndpoint,
credentials: {
key: managerApiKey.id,
secret: managerApiKey.secret,
}
});
Finally, add some Pulumi stack outputs. Stack outputs allow you to access values from your Pulumi program in two ways:
- Via stack references in other Pulumi programs, which you won’t use in this blog tutorial.
- From the command line via the
pulumi stack output
command, which you will use to test your Kafka cluster.
The syntax for Pulumi stack outputs varies by language, but in TypeScript programs they are accomplished by a simple export
statement:
export const ordersTopicName = topic.topicName;
export const environmentId = env.id;
export const clusterId = cluster.id;
export const producerApiKeyId = producerApiKey.id;
export const producerApiKeySecret = producerApiKey.secret;
export const consumerApiKeyId = consumerApiKey.id;
export const consumerApiKeySecret = consumerApiKey.secret;
Your Pulumi program is now complete! You can deploy our infrastructure by running the following command:
pulumi up
After a short wait, your cluster is up and running, and you are ready to test your infrastructure!
Testing
To simulate your producer and consumer, you can use the Confluent CLI to send messages to and read messages from your topic. You will use the values of your Pulumi stack outputs to formulate the command.
confluent login
command first if you have not yet done so. At the time of writing, failure to do so will lead to misleading error messages from the Confluent CLI. The confluent login
command will need to be run periodically as the token it generates expires after a few hours.To simulate a message producer, you can send messages to your Kafka topic with the following command:
confluent kafka topic produce $(pulumi stack output ordersTopicName) \
--environment $(pulumi stack output environmentId) \
--cluster $(pulumi stack output clusterId) \
--api-key $(pulumi stack output producerApiKeyId) \
--api-secret "$(pulumi stack output producerApiKeySecret --show-secrets)"
You can enter a few sample records like the following and then press Ctrl-C
when you’re done to exit:
{"number":1,"date":18500,"shipping_address":"899 W Evelyn Ave, Mountain View, CA 94041, USA","cost":15.00}
{"number":2,"date":18501,"shipping_address":"1 Bedford St, London WC2E 9HG, United Kingdom","cost":5.00}
{"number":3,"date":18502,"shipping_address":"3307 Northland Dr Suite 400, Austin, TX 78731, USA","cost":10.00}
To simulate your consumer and read the records you just wrote, you can enter the following command:
$ confluent kafka topic consume $(pulumi stack output ordersTopicName) \
--from-beginning \
--environment $(pulumi stack output environmentId) \
--cluster $(pulumi stack output clusterId) \
--api-key $(pulumi stack output consumerApiKeyId) \
--api-secret $(pulumi stack output consumerApiKeySecret --show-secrets)
You should see the events you entered as the producer:
Starting Kafka Consumer. Use Ctrl-C to exit.
{"number":3,"date":18502,"shipping_address":"3307 Northland Dr Suite 400, Austin, TX 78731, USA","cost":10.00}
{"number":1,"date":18500,"shipping_address":"899 W Evelyn Ave, Mountain View, CA 94041, USA","cost":15.00}
{"number":2,"date":18501,"shipping_address":"1 Bedford St, London WC2E 9HG, United Kingdom","cost":5.00}
The producer is able to write events to your topic, and the consumer is able to read them. Your architecture has been proven to work!
See it in action
Want to see this in action? Here is a Modern Infrastructure video demonstrating everything discussed in this blog post:
Conclusion
By combining the operational simplicity and rich functionality of Confluent Cloud with the power of Pulumi’s infrastructure as code platform to manage Confluent resources using real programming languages, organizations can quickly and securely deploy Apache Kafka clusters.
No matter whether your organization is using data streaming today or looking to adopt it in the future, using Confluent Cloud with Pulumi will allow your organization to quickly spin up and manage Kafka infrastructure so you can focus on what really matters: delivering value to customers and stakeholders.
Additional Resources
Watch Collin James, Engineering Leader, and Software Architect at Dutchie, describe how a small team has enabled Kafka adoption by creating a monorepo of Pulumi projects that manage resources on Confluent Cloud.